Reg. No.:....

Name :

Supplementary) Examination, November 2024 (2019 and 2020 Admissions) BHM302: VECTOR CALCULUS

III Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. -

Time: 3 Hours

Max. Marks: 60

Answer any four questions out of five questions. Each question carries

SECTION - A

one mark.

 $(4 \times 1 = 4)$

- 1. Write the formula for the length of a smooth curve r(t) = x(t)i + y(t)j + z(t)k, 2. Find the gradient of the function $f(x, y) = \ln(x^2 + y^2)$ at the given point (1,1).
- Describe the given region in polar coordinates.

5. Find the Curl of $F = x^2 + y^2 + z^2 + 1$.

4. Draw the graph of vector equation r(t) = ti + (1 - t)j, $0 \le t \le 1$.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12)

6. Find the curve $r(t) = (2 \cos t)i + (2 \sin t)j + 25tk$, $0 \le t \le \pi$, unit tangent vector.

- 7. Let f(x,y) = x y, g(x, y) = 3y. Find $\nabla(fg)$.

P.T.O.

K24U 3607

8. Find the linearization L(x, y) of the function $f(x,y) = (x + y + 2)^2$ at point (0, 0).

 $(8 \times 4 = 32)$

- 9. Evaluate the iterated integral $\iint_{-\infty}^{2} 2xy \, dx \, dy$.
- 10. Find a spherical coordinate equation for the cone $z = \sqrt{x^2 + y^2}$.
- 11. Find the Jacobian of the transformation $x = \frac{u}{v}$, y = uv.
- 12. Integrate $f(x, y, z) = x 3y^2 + z$ over the line segment C joining the origin to the point (1, 1, 1).
- 13. Find a parametrization of the sphere $x^2 + y^2 + z^2 = a^2$.
- 14. Integrate $G(x, y, z) = x^2$ over the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$. SECTION - C
- Answer any 8 questions out of 12 questions. Each question carries 4 marks.

15. Let r(t) = (t + 1)i + (t - 1)j + 2tk is the position of a particle in space at time t. Find the particle's velocity and acceleration vectors. Then find the particle's speed and direction of motion at the given value of t =1. Write the particle's velocity at that time as the product of its speed and direction.

- 16. Find the binormal vector and torsion for the space curve $r(t) = (3 \sin t)i + (3 \cos t)j + 4tk.$ 17. Using the definition, find the derivative of $f(x, y) = x^2 + xy$ at (1, 2) in the direction of the unit vector $\frac{1}{\sqrt{2}}i + \frac{1}{\sqrt{2}}j$.
- 18. Let $f(x, y) = x^2 xy + y^2 y$. Find the directions u and the values of D_u f(1, -1)a) D_u f(1, -1) is largest
 - d) $D_{ij} f(1, -1) = 4$.

b) D_u f(1, −1) is smallest

19. Find the volume of the region bounded above by the surface $z = 2 \sin x \cos y$ and below by the rectangle R: $0 \le x \le \frac{\pi}{2}, \ 0 \le y \le \frac{\pi}{4}$.

c) $D_{ij} f(1,-1) = 0$

-3-

20. Find the area of the region cut from the first quadrant by the curve $r = 2(2 - \sin 2\theta)^{\frac{1}{2}}$.

21. Find the average value of $F(x, y, z) = x^2 + 9$ over the cube in the first octant bounded by the coordinate planes and the planes x = 2, y = 2 and z = 2.

23. Find the work done by $F = (x^2 + y)i + (y^2 + x)j + ze^z k$ over the path the line segment x = 1, y = 0, $0 \le z \le 1$ from (1, 0, 0) to (1, 0, 1).

 $r(t) = (\cos t)i + (\sin t)j, \ 0 \le t \le 2\pi.$

24. Find the surface area of a sphere of radius 2.

22. Find the circulation of the field F = (x - y)i + xj around the circle

K24U 3607

- 25. Find the flux of $F = yzj + z^2k$ outward through the surface S cut from the cylinder $y^2 + z^2 = 1$, $z \ge 0$, by the planes x = 0 and x = 1. 26. Find the circulation of the field $F = (x^2 - y)i + 4zj + x^2 k$ around the curve C in which the plane z=2 meets the cone $z=\sqrt{x^2+y^2}$, counterclockwise as viewed
- from above. SECTION - D Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12)

27. Find unit tangent vector, principal unit normal vector, and curvature for the plane curve in $r(t) = ti + (ln \cos t)j$, $-\pi/2 < t < \pi/2$.

- 28. Convert the integral $\int_{1}^{1} \int_{1}^{\sqrt{1-y^2}} \int_{1}^{x} (x^2 + y^2) dz dx dy$, to an equivalent integral in cylindrical coordinates and evaluate the result.
- 29. Show that $F = (e^x \cos y + yz)i + (xz e^x \sin y)j + (xy + z)k$ is conservative over its natural domain and find a potential function for it. 30. Let S be the "football" surface formed by rotating the curve $x = \cos z$, y = 0, $-\frac{\pi}{2} \le z \le \frac{\pi}{2}$ around the z-axis, Find a parametrization for S and compute its
- surface area.