K24U 3605

Name :

III Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - O.B.E -Regular/Supplementary/Improvement) Examination, November 2024 (2021 to 2023 Admissions) 3B13 BMH: NUMERICAL ANALYSIS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. Give an example of an algebraic equation.

- 2. Write the formula for the secant method.
- 3. Define the forward difference operator.
- 4. Write Simpson's $\frac{1}{3}$ rule.
- 5. What is the formula for computing $\left(\frac{d^2y}{dx^2}\right)_{x}$ by Newton's forward difference $(4 \times 1 = 4)$ formula. SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

6. Use Newton-Raphson method to find a root of the equation $x = e^{-x}$.

- Construct a forward difference table for the following data:
- 30

0.174 | 0.347 | 0.518

P.T.O.

$X_0 = \frac{\pi}{2}$.

13. Prove that $\nabla = 1 - E^{-1}$.

Year

Sales (in lakhs)

the value of y(8).

K24U 3605

8. Find the root of the equation 2x = cosx + 3 by using iteration method, with

9. Find a real root of the equation $f(x) = x^3 - x - 1 = 0$ using bisection method.

-2-

- 10. Use the trapezoidal rule with n = 4 to evaluate $\int_{-\infty}^{\infty} \frac{1}{y} dx$. Evaluate Δe^{ax}.
- Write the Gauss's central backward difference formula.
- Write the Newton's divided difference interpolation formula.

1931

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

 $(6 \times 2 = 12)$

15. Prove that the nth differences of a polynomial of the nth degree are constant and all higher order differences are zero.

SECTION - C

16. Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the method of regula-falsi to determine it.

17. Find a real root of the equation $x^3 - 2x - 5 = 0$ using secant method. 18. Using Gauss's backward formula, find the sales for the year 1966, given that

1951

1971

39

1981

1961

19. Prove the following relations : (i) $\nabla = \delta E^{\frac{1}{2}}$ (ii) $\mu = \cosh \frac{hD}{2}$. 20. Find the cubic polynomial which takes the following values :

1941

15

21. If $y_1 = 4$, $y_3 = 12$, $y_4 = 19$ and $y_x = 7$, find x. 22. Derive Simpson's $\frac{1}{3}$ rule.

y(1) = 24, y(3) = 120, y(5) = 336 and y(7) = 720. Hence, or otherwise, obtain

27

by Trapezoidal rule.

-3-

23. Find the value of Jog10 x dx, taking 8 subintervals correct to four decimal places

25. Using Newton's forward difference formula, find the sum $S_n = 1^3 + 2^3 + 3^3 + ... + n^3$.

K24U 3605

 $(8 \times 4 = 32)$

 $(2 \times 6 = 12)$

Answer any 2 questions out of 4 questions. Each question carries 6 marks. 1.5 2.5

2.8

2.4

 $1 - x + \frac{x^2}{(2!)^2} - \frac{x^3}{(3!)^2} + \frac{x^4}{(4!)^2} - \dots = 0.$

24. From the table of values below compute $\frac{dy}{dx}$ for x = 1.

26. Use the method of separation of symbols, show that

 $\Delta^{n} u_{x-n} = u_{x} - n u_{x-1} + \frac{n(n-1)}{2} u_{x-2} + \dots + (-1)^{n} u_{x-n}.$

125 | 216

64

27. A curve is drawn to pass through the points given by the following table :

3.5

2.6

SECTION - D

Find the area bounded by the curve, the x axis and the lines x = 1, x = 4. 28. From the following table of values of x and y find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.05.

3

1.0 1.05 1.10 1.15 1.20 1.25 1.30 1.04881 | 1.07238 | 1.09544 | 1.11803 | 1.14017 1.0 1.02470 29. Using Ramanujan's method, find a real root of the equation

30. Find Lagrange's interpolation polynomial fitting the points : f(1) = -3, f(3) = 0, f(4) = 30, f(6) = 132. Hence find f(5).