III Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. –

Supplementary) Examination, November 2024 (2019 and 2020 Admissions) BHM 305 : ADVANCED LINEAR ALGEBRA Time: 3 Hours

Max. Marks: 60

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

SECTION - A

1. Let F be a field and let f be the linear functional on F^2 defined by $f(x_1, x_2) =$ $ax_1 + bx_2$. Let T be a linear operator on F^2 defined by $T(x_1, x_2) = (x_1, 0)$ and let

- $g = T^t f$. Find $g(x_1, x_2)$.
- 2. Find the minimal polynomial for T whose matrix representation is 3 -6 -4 3. Let(|) be the standard inner product on R^2 . Let $\alpha = (1, 2)$, $\beta = (-1, 1)$. If γ is a vector such that $(\alpha | \gamma) = -1$ and $(\beta | \gamma) = 3$, find γ .
- 4. Let V be the space C2, with standard inner product. Let T be the linear operator defined by $T \in \{1, -2\}$, $T \in \{1, -1\}$. If $\alpha = (x_1, x_2)$, find $T^*\alpha$.
- 5. Show that $A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal. SECTION - B
- Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12) 6. Let V and W be finite dimensional vector spaces over the field F, and let T be

a linear transformation from V into W. Prove that rank (T^t) = rank (T).

- 7. Find the characteristic values of A = $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$

 $(8 \times 4 = 32)$

K24U 3610

P.T.O.

satisfies the following conditions: i) $T = c_1 E_1 + ... + c_k E_k$;

basis.

 $B_{ii} = A_{ii}$.

K24U 3610

ii) $I = E_1 + ... + E_k$; iii) $E_i E_i = 0$, $i \neq j$ Prove that $E_i^2 = E_i$ and the range of E_i is the characteristic space for T associated with ci.

8. Let T be a linear operator on a finite dimensional space V. Suppose there exists k distinct scalars c_1, \ldots, c_k and k nonzero linear operators E_1, \ldots, E_k which

i) $(0|\beta) = 0$ for all β in V. ii) if $(\alpha|\beta) = 0$ for all β in V, then $\alpha = 0$.

9. Let V be a vector space and (|) an inner product on V. Show that

- 10. Let V be an inner product space. Prove that $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$ for all $\alpha, \beta \in V$. 11. Prove that every finite dimensional inner product space has an orthonormal
- 12. Let V be a finite dimensional inner product space, and f a linear functional on V.
- Prove that there exist a unique vector β in V such that $f(\alpha) = (\alpha|\beta)$ for all α in V.
- 13. Let V be a finite dimensional inner product space, and let T be a linear operator on V. In any orthonormal basis for V, prove that the matrix of T* is the conjugate transpose of the matrix of T.
- Prove that each characteristic value of T is real and characteristic vector of T associated with distinct characteristic values are orthogonal. SECTION - C

15. Let V and W be finite dimensional vector spaces over the field F. Let β be an ordered basis for V with dual basis β^* , and let β' be an ordered basis for W

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

14. Let V be an inner product space and T a self adjoint linear operator on V.

with dual basis β'^* . Let T be a linear transformation from V into W; let A be the matrix of T relative to β , β' and let B be the matrix of T^t relative to β'^* , β' . Prove that

-3-

16. Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p = (x - c_1) \dots (x - c_k)$ where c_1, \dots, c_k are distinct elements

17. Let T be a linear operator on R3 which is represented in the standard ordered basis

by the matrix $\begin{vmatrix} -8 & 3 & 4 \\ -16 & 8 & 7 \end{vmatrix}$. Prove that T is diagonalizable by exhibiting

a basis of R3, each vector of which is a characteristic vector of T.

18. Find an invertible real matrix P such that P-1AP and P-1BP are both diagonal, where $A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -8 \\ 0 & -1 \end{bmatrix}$. 19. Let T be a linear operator on the space V, and let W_1, \ldots, W_k and E_1, \ldots, E_k

i = 1, ..., k.

be on V such that

i) $E_i^2 = E_i$ for each i; ii) $E_i E_j = 0$ if $i \neq j$; iii) $I = E_1 + \dots E_k$; iv) the range of Ei is Wi.

Prove that each subspace W_i is invariant under T if and only if $TE_i = E_iT$ for

20. Let V be a vector space of all continuous real valued functions on [0, 1]. Let f, $g \in V$.

Define (f|g) by $(f|g) = \int f(t)g(t)dt$. Prove that (f|g) is an inner product on V.

21. State and prove parallelogram law.

22. State and prove Cauchy Schwarz inequality.

- transformation of V onto W, W^{\perp} is the null space of E and V = W \oplus W $^{\perp}$. 24. Let V be a finite dimensional inner product space. If T and U are linear operators on V and c is a scalar, prove that i) $(T + U)^* = T^* + U^*$

23. Let W be a finite dimensional subspace of an inner product space V and let E be an orthogonal projection of V on W. Then prove that E is an idempotent linear

-4-K24U 3610

25. On a finite dimensional inner product space of positive dimension, prove that

SECTION - D

every self adjoint operator has a characteristic vector.

ii) (TU)* = U*T*

operators which commute.

iii) $(T^*)^* = T$

29. State and prove Gram Schmidt orthogonalization process. 30. Prove that for every invertible complex n x n matrix B there exists a unique lower triangular matrix M with positive entries on the main diagonal such that

MB is unitary.

27. State and prove Cayley Hamilton theorem.

28. State and prove primary decomposition theorem.

26. Prove that T is normal if and only if $T = T_1 + iT_2$ where T_1 and T_2 are self adjoint Answer any 2 questions out of 4 questions. Each question carries 6 marks. $(2 \times 6 = 12)$