III Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. -Supplementary) Examination, November 2024 (2019 and 2020 Admissions) BHM 301 : REAL ANALYSIS

Time: 3 Hours

Max. Marks: 60

PART - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- 1. State the Trichotomy Property.
- 2. When can you say that a sequence is convergent?
- 3. Define an increasing sequence.
- 4. State Lipschitz condition.
- 5. Define conditionally convergent series.

PART - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6×2=12)

- 6. If u and $b \neq 0$ are elements in R with u.b = b, then prove that u = 1.
- 7. State and prove the Triangle Inequality.
- 8. Prove that the sequence (1 + (-1)ⁿ) is not a Cauchy sequence.
- 9. Prove that a sequence in R can have at most one limit.
- 10. State and prove the nth term test for convergence of a series.
- 11. If a series in R is absolutely convergent, then prove that it is convergent.

12. Let $X := (x_n)$ be a nonzero sequence in R and let $a = \lim_{n \to \infty} \left(n \left(1 - \left| \frac{x_n + 1}{x_n} \right| \right) \right)$ whenever this limit exists. Then prove that $\sum x_n$ is absolutely convergent when a>1 and is no absolutely convergent when a < 1.

-2-

- 13. Let I = [a, b] be a closed, bounded interval and let $f: I \rightarrow R$ be continuous on I. If $k \in R$ is any number satisfying in f f(I) $\leq k \leq sup \; f(I)$ then prove that there exists a number $c \in I$ such that f(c) = k.
- 14. If $f: A \rightarrow R$ is uniformly continuous on a subset A of R and if (x_n) is a Cauchy sequence in A, then prove that $(f(x_n))$ is a Cauchy sequence in R.

PART - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

- 15. Determine the set B = $\{x \in R : |x 1| < |x|\}$.
- 16. State and prove the Archimedean Property.
- 17. If a and b are positive real numbers, then prove that their arithmetic mean is $\frac{a+b}{2}$, their geometric mean is \sqrt{ab} and the Arithmetic-Geometric Mean inequality for a, b is $\sqrt{ab} \le \frac{a+b}{2}$ with equality occurring if and only if a = b.
- 18. State and prove Bolzanos Intermediate Value Theorem.
- 19. State and prove the Boundedness Theorem.
- 20. Let I be an interval and let $f: I \to R$ be continuous on I. Then prove that the set f (I) is an interval.
- 21. State and prove Monotone Subsequence Theorem.
- 22. Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Then prove that the sequence $\sqrt{(x_n)}$ of positive square roots converges and $\lim \sqrt{(x_n)} = \sqrt{x}$.
- 23. Prove that every contractive sequence is a Cauchy sequence, and therefore is convergent.

24. State and prove the limit comparison test for convergence of a series.

25. Let $Z := (z_n)$ be a decreasing sequence of strictly positive numbers with $\lim(z_n) = 0$. Then prove that the alternating series $\sum (-1)^{n+1}z_n$ is convergent.

K24U 3606

26. State and prove the integral test for convergence.

PART - D

Answer any two questions out of 4 questions. Each question carries 6 marks. (2x6=12)

- 27. Prove that there exists a positive real number x such that $x^2 = 2$.
- 28. State and prove the location of roots theorem.
- 29. Let Y = (y_n) be defined inductively by $y_1 := 1$; $y_{n+1} := \frac{2y_n + 3}{4}$ for $n \ge 1$. Find lim Y.
- 30. i) State and prove Abels lemma.

ii) State and prove Abels test for convergence of series.

