Reg. No.:

Name :

Second Semester B.Sc. (Hon's) Mathematics Degree (CBCSS - Supplementary/One Time Mercy Chance) Examination, April 2024 (2016 - 2020 Admissions)

BHM 203: INTEGRAL CALCULUS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- Find a formula for the nth term of the sequence 2, 6,10,14,18, ...
- 2. Given $a_1 = 1$, $a_{n+1} = \frac{a_n}{n+1}$. Find a_2 , a_3 , a_4 , a_5 .
- 3. Find the sum of the geometric series $\sum_{n=1}^{\infty} \frac{(-1)^n 5}{4^n}$.
- 4. Find $\frac{d}{dx} \int_{-\pi}^{x} \cos t dt$. 5. Define Taylor Series generated by a function f(x) at x = a.
- SECTION B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6x2=12)

- 6. For what values of x do the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} = x \frac{x^2}{2} + \frac{x^3}{3} \dots$ converge? 7. Find the Taylor series and Taylor polynomials generated by $f(x) = \cos x$ at
- x = 0.

P.T.O.

 $(8 \times 4 = 32)$

K24U 1804

Express the solution of the initial value problem $\frac{dy}{dx} = \sec x$, y(0) = 4. Express the limit $\lim_{\|P\|\to 0} \sum_{k=1}^n \left(\frac{1}{c_k}\right) \Delta x_k$, where P is a partition of [1, 4].

- 10. Evaluate $\int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} dx$. 11. Find the area between $y = 2 \sin x$ and $y = \sin 2x$, $0 \le x \le \pi$.
- 12. Find the volume of the solid generated by revolving the region between the
- y axis and the curve $x = \frac{2}{y}$, $1 \le y \le 4$, about the y axis. Using reduction formula, evaluate ∫sin⁵ x dx.
- Using reduction formula, evaluate ∫tan⁴ x dx.
- SECTION C Answer any 8 questions out of 12 questions. Each question carries 4 marks.

Find the Maclaurin series for cos 2x.

16. Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

- 17. Find the Taylor series expansion about x = 0 of $\frac{1}{3}(2x + x \cos x)$. 18. Find the length of the curve $y = \left(\frac{x}{2}\right)^{\frac{2}{3}}$ from x = 0 to x = 2.
- 19. Show that the center of mass of a straight, thin strip or rod of constant density lies halfway between its two ends. 20. Define work done by a force F(x) along x – axis. Calculate the work done by

 $F(x) = \frac{1}{v^2}N$ along the x – axis from x = 1m to x = 10 m.

21. It took 1800 J of work to stretch a spring from its natural length of 2 m to a length of 5 m. Find the Spring's force constant.

23. Using the definition of limits, show that $\lim_{n\to\infty} k = k$.

24. State the nth term test for divergence and hence test the divergence of the

 $(2 \times 6 = 12)$

K24U 1804

series $\sum_{n=1}^{\infty} \frac{n+1}{n}$. 25. State second part of the Fundamental Theorem of Calculus and evaluate $\int_{-\pi/4}^{0} \sec x \tan x \, dx.$

22. Evaluate $\int_0^1 \frac{x^3}{\sqrt{x^4+9}}$ and $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(2+\tan\frac{t}{2}\right) \sec^2\frac{t}{2} dt$.

26. At what point in the interval $\left[0, \sqrt{3}\right]$, does the function $f(x) = x^2 - 1$ assumes its average value? SECTION - D Answer any 2 questions out of 4 questions. Each carries 6 marks.

-3-

- 28. Find the length of the cardioid $r = 1 \cos \theta$. 29. Give the reduction formula for $\int_0^2 \sin^n x \, dx$ and evaluate $\int_0^1 \frac{x^n}{\sqrt{1-x^2}} \, dx$.
- 30. a) Use the Max-Min Inequality to find the upper and lower bounds for the value of $\int_0^1 \frac{1}{1+x^2} dx$.

27. Find the area inside the smaller loop of the limacon $r = 2 \cos \theta + 1$.

b) Use the inequality $\sin x \le x$, which holds for $x \ge 0$, to find an upper bound for the value of $\int_0^1 \sin x \, dx$.