Name :

Il Semester B.Sc. Mathematics (Hon's) Degree (C.B.C.S.S. - OBE - Regular/ Supplementary/Improvement) Examination, April 2024 (2021 Admission Onwards) Core Course

2B05BMH : CALCULUS - II

Time: 3 Hours

Max. Marks: 60

Answer any 4 questions. Each question carries 1 mark.

SECTION - A

1. Convert the point $\left(2, \frac{\pi}{3}\right)$ from polar to Cartesian Coordinates.

 $(4 \times 1 = 4)$

- 2. Write down the formula for finding the length of a curve with polar equation $r = f(\theta)$ from the point at which $\theta = a$ to the point where $\theta = b$.
- 3. What does it mean to say that $\lim_{n\to\infty} a_n = 8$?
- State limit comparison test for series. Write down the general equation of the hyperbolic paraboloid.
 - SECTION B
 - Answer any 6 out of 9 questions. Each question carries 2 marks.

6. Show that the surface area of a sphere of radius r is $4\pi r^2$.

7. Find the slope of the tangent to the curve x = 1 + ln(t), $y = t^2 + 2$ at the point (1, 3).

 $(6 \times 2 = 12)$

- 8. Determine whether the sequence $a_n = \frac{\sin 2n}{1 + \sqrt{n}}$ converge or diverge. If it converge, find the limit.
- 9. If $\lim_{n\to\infty} |a_n| = 0$, then show that $\lim_{n\to\infty} a_n = 0$. P.T.O.

K24U 1715

10. Check whether the series $\sum_{n=1}^{\infty} \frac{e^n}{\left(1+\frac{1}{n}\right)}$ converges or diverges. Justify your

11. Show that if |r(t)| = c (a constant), then r'(t) is orthogonal to r(t) for all t. 12. Find the equation of a plane through the point (6, 3, 2) and perpendicular to the 13. Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$, if $u = x^{\frac{y}{z}}$.

-2-

- 14. Find $D_u f(2, -1)$, if $f(x, y) = x^2 y^3 4y$ and $u = \frac{2}{\sqrt{29}} i + \frac{5}{29} j$.
- SECTION C Answer any 8 out of 12 questions. Each question carries 4 marks. 15. Find the surface area obtained by rotating the given curve about x-axis. $x = t^3$,

16. Prove that if $\lim_{n\to\infty}a_n=0$ and $\left\{b_n\right\}$ is bounded, then $\lim_{n\to\infty}(a_nb_n)=0$.

 $(8 \times 4 = 32)$

- 17. Determine whether the series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ converges or diverges. Justify your answer. 18. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n e^{\frac{1}{n}}}{n^3}$ is absolutely convergent,
 - conditionally convergent or divergent. Justify your answer.
- 19. Evaluate $\int e^{-x^2} dx$ as an infinite series.
- 20. Find symmetric equations for the line of intersection L of the planes x + y + z = 1
- 21. Find the arc length of the circular helix with vector equation $r(t) = \cos ti + \sin tj + tk$ from the point (1, 0, 0) to the point (1, 0, 2 π). 22. If $z = e^x \sin y$, where $x = st^2$ and $y = s^2t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

$f(x,y) = \begin{cases} \frac{x^2y^3}{2x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 1 & \text{if } (x,y) = (0,0) & \text{is continuous.} \end{cases}$

of $\vec{v} = -\frac{2}{3}i + \frac{2}{3}j - \frac{1}{3}k$.

and normal components of acceleration.

given by $r(\overrightarrow{t})$ is, $K(t) = \frac{\left|r'(t) \times r''(t)\right|}{\left|r'(t)\right|^3}$.

 $\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}.$

25. Determine the set of points at which the function.

 $(2 \times 6 = 12)$

K24U 1715

26. Let f and g are twice differentiable function of a single variable. Show that the function u(x, t) = f(x + at) + g(x - at) is a solution of the wave equation $u_{tt} = a^2 u_{xx}$ SECTION - D Answer any 2 out of 4 questions. Each question carries 6 marks.

27. a) Let $r(\overrightarrow{t})$ be a vector valued function. Show that the curvature of the curve

23. Find directional derivative of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at (1, 2, -2) in the direction

24. A particle moves with position function $r(t) = t^2i + t^2j + t^3k$. Find the tangential

28. a) Find the directional derivative of $f(x, y, z) = x^3 - xy^2 - z$ at $P_0(1, 1, 0)$ in the direction of v = 2i - 3j + 6k. b) Use Lagrange multipliers to prove that the rectangle with maximum area that has a given perimeter P is a square.

b) Find the radius of convergence and interval of convergence of the series

THE OWNER WAS AND THE WAS AND THE WAS AND

29. a) Find parametric equations for the tangent line to the curve $x=1+2\sqrt{t}, \ \ y=t^3-t, \ \ z=t^3+t \ \ \text{at the point} \ \ (3,0,2).$ b) Find an equation of the plane that passes through the points (0, -2, 5)

K24U 1715

30. a) A rectangular box without a lid to be made from 12m² of cardboard. Find the maximum volume of such a box. b) Find the area of the region enclosed by one loop of the curve $r=4\cos3\theta$.

and (-1, 3, 1) and is perpendicular to the plane 2z = 5x + 4y.