Reg. No.:

Name:

First Semester B.Sc. Honours in Mathematics (C.B.C.S.S. - O.B.E. -Supplementary/Improvement) Examination, November 2024 (2021 to 2023 Admission) Core Course

1B02BMH: FOUNDATIONS OF MATHEMATICS

Time: 3 Hours

Max. Marks: 60

PART - A

Answer any 4 questions. Each question carries 1 mark.

 $(4 \times 1 = 4)$

Define Range of an m x n matrix A.

- 2. What is the graphical characterization of a bijective function defined on $\mathbb R$?
- 3. Define partition of a non-empty set.
- Define hyperplane in Rⁿ.
- Define Kernal of an m x n matrix A. PART - B

Answer any 6 questions. Each question carries 2 marks. 6. $f: X \to Y$ such that $f(A \cap B) = f(A) \cap f(B)$ holds for all subsets A and B of X. Show

 $(6 \times 2 = 12)$

- that f is one-one. 7. $f: X \to Y$ and $g: Y \to Z$ be two one-one functions. Is $g \circ f$ one-one? Justify.
- 8. Let $X = \mathbb{N} \times \mathbb{N}$. Define $(m, n) \sim (p, q)$ iff m + q = p + n. Show that the relation is
- transitive. 9. Write example of a relation that is not a function.
- 10. Find the angle between vectors $\binom{1}{2}$ and $\binom{3}{1}$. 11. State basic properties of inner product of \mathbb{R}^n .
- 12. State elementary row operations.

P.T.O.

Write an example for augmented matrix.

K24U 4132

-2-

- 14. When do we say that a matrix is in Row echelon form?
- PART C

Answer any 8 questions. Each question carries 4 marks.

15. $f:[0,\pi)\to\mathbb{R}$ given by $f(x)=\cos x$. Check whether f is one-one.

3 5 1 6

 $(8 \times 4 = 32)$

- 16. $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Show that f([-4, 3]) = [0, 16].
- 17. Show that a function $f: X \to Y$ is one-one iff $A = f^{-1}$ (f(A)) for each $A \subseteq X$.
- 18. Define equivalence relation. Let X be a non-empty set and ~ be an equivalence
- relation on X. If $y \in [x]$, then show that [x] = [y]. 19. Write the equivalence classes and the transversal of the relation
- $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : xy > 0\} \cup \{(0, 0)\}.$ 20. Let X = Z*, set of non-zero integers. Define a relation R on X by mRn iff m divides n. Check whether the relation is reflexive, symmetric, anti-symmetric
- and transitive. 21. Show that the planes x + 2y - 3z = 0 and x - 2y + 5z = 4 intersect in a line. Find vector equation of line of intersection.
- 22. If $v = (1, 2)^T$, then find a unit vector in the same direction as v. 23. Write the Cartesian equation of the plane
- $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = s \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 7 \end{pmatrix}; s, t \in \mathbb{R}.$

24. Define rank of a matrix M. Find the rank of the matrix
$$M = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 0 & 5 \\ 3 & 5 & 1 & 6 \end{pmatrix}$$

25. Solve the system of equations using Gaussian Elimination x + y + z = 32x + y + z = 4x - y + 2z = 5.

26. Check whether the system of equations are consistent or inconsistent

x + y + 3z + w = 2, x - y + z + w = 4, y + 2z + 2w = 0.

27. State and prove the following: a) The Induction Principle ⇒ The Strong Induction Principle.

b) The Well Ordering Principle ⇒ The Induction Principle.

29. If A is an $n \times n$ matrix, show that the following statements are equivalent.

-3-

PART - D

- a) A⁻¹ exist. b) Ax = b has a unique solution for any $b \in \mathbb{R}^n$.

Answer any 2 questions. Each question carries 6 marks.

30. Are the following lines L₁ and L₂ intersecting, parallel or skew?

d) The reduced row echelon form of A is I.

 $L_1: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}; t \in \mathbb{R}$

c) Ax = 0 only has trivial solution x = 0.

28. State and prove Cantor's theorem.

 $L_2: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 6 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 7 \end{pmatrix}; t \in \mathbb{R} \cdot$

K24U 4132

 $(2 \times 6 = 12)$