

K24U 4131

Reg. No. :

Name :

First Semester B.Sc. Honours in Mathematics (C.B.C.S.S. – O.B.E. – Supplementary/Improvement) Examination, November 2024 (2021 to 2023 Admission)

Core Course

1B01 BMH : CALCULUS - I

Time: 3 Hours

Max. Marks: 60

PART - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. What is the domain of the function $y = \sqrt{x-1}$?
- 2. Write the formula for the local linear approximation of y = f(x) at $x = x_0$.
- 3. Evaluate f'(x) if $f(x) = \tanh \sqrt{x^2 + x}$.
- 4. Evaluate $\frac{d}{dx} \int_{1}^{x^2} \sec t \, dt$.
- 5. Write the formula for finding the volume by cylindrical shell about Y- axis. (4×1=4)

PART – B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- 6. Prove that $\lim_{x \to -2} 3x + 5 = -1$.
- 7. Prove that $\cos (\sin^{-1} x) = \sqrt{1 x^2}$.
- 8. Using Intermediate Value Theorem show that there is a root of the equation $x^4 + x 3 = 0$ in the interval (1, 2).
- 9. Evaluate $\lim_{x\to 0} \frac{\tan x}{x^2}$.
- 10. Find the average value of the function $f(x) = 1 + x^2$ on [-1, 2].

P.T.O.

K24U 4131

-2-

- 11. Find the linear approximation of $f(x) = \sqrt{1-x}$ at a = 0 and approximate $\sqrt{0.9}$. 12. Sketch the graph of the function $f(x) = 3 - 2^x$ and determine its domain and
- range.

 13. Evaluate ∫ sin⁻¹ x dx.
- 14. Use the Mid-Point Rule with n = 5, to approximate $\int_1^2 \frac{1}{y} dx$.
- PART C

 $(6 \times 2 = 12)$

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

15. Evaluate $\lim_{x \to \infty} (\ln x)^{\frac{1}{x}}$.

- 16. Sketch the region represented by the definite integral $\int_0^1 (x+1) dx$ and hence find
- its value. 17. Show that $sinh^{-1} x = In \left(x + \sqrt{x^2 + 1}\right)$.
- 18. Show that every polynomial functions are continuous on \mathbb{R} . $2x^2-5$

 $\begin{cases} \frac{2x^2-5x-3}{x-3}, & \text{if } x \neq 3 \end{cases}$

- 19. Check the continuity of the function at x = 3 if f(x)=
 20. Using Reduction formula evaluate ∫ sin⁵xcos²xdx.
- 21. Derive the formula for the circumference of the circle of radius r.
- 22. Find the local extrema of $f(x) = x^4 4x^3 + 4x^2$.
- 23. Find the area of the region bounded by $x = y^2$ and y = x 2.
- 24. Find the absolute maximum and minimum values of the function f(x) = 4x² 12x + 10 on [1, 2].
 25. Evaluate lim arcsin (1-√x)/(1-x).

26. Verify Rolle's theorem for the function $f(x) = x^2 - 6x + 8$ at [2, 4].

on

 $(8 \times 4 = 32)$

K24U 4131

 $(2 \times 6 = 12)$

-3-

PART - D

that can be inscribed in a right circular cone with radius 6 inches and height

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

10 inches.

28. State and prove Mean Value theorem.

Find the volume of the resulting solid.

27. Find the radius and the height of the right circular cylinder of largest volume

- 29. Find the area of the surface that is generated by revolving the portion of the curve y = x³ between x = 0 and x = 1 about the x-axis.
 30. The region R enclosed by the curve y = x and y = x² is rotated about the X-axis.