Reg. No.:

Name :

First Semester B.Sc. Honours in Mathematics (C.B.C.S.S. – OBE – Supplementary/Improvement) Examination, November 2024 (2021 to 2023 Admission) Core Course

1B04 BMH: TWO DIMENSIONAL GEOMETRY

Time: 3 Hours

Max. Marks: 60

PART - A

Answer any 4 questions. Each question carries 1 mark:

 $(4 \times 1 = 4)$

- Write the parametric equation of the ellipse.
- 2. Define the auxiliary circle.
- Define the translation of axes.
- 4. Write the equation of the tangent line to the parabola $y^2 = 4ax$.
- Define the conjugate hyperbola.

PART - B

Answer any 6 questions. Each question carries 2 marks : 6. Find the equation of the curve $2x^2 - 3y^2 + 4x - 2y + 8 = 0$ referred to a new

 $(6 \times 2 = 12)$

- origin at the point (1, 2). 7. Find the equation of the locus of the point P such that it is equidistant from
- the point A(2, 0) and y axis. 8. Find the locus of middle points of chords of the parabola $y^2 = 4ax$ which passes through the point (h, k).
- Define asymptote and what is the equation of asymptote of the hyperbola.

P.T.O.

given.

K24U 4134

- 10. The normal at a point t_1 on the parabola $y^2 = 4ax$ meets its again at t_2 . Prove that $t_2 = -t_1 - \frac{2}{t_1}$...
- 11. Find the condition for 1x + my + n = 0 to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 12. Find the polar equation of a conic, the focus being at the pole.
- 13. What is the angle between the lines given by the equations ax2 + 2hxy + by2?
- 14. Find the equation of the parabola whose focus (0, 2) and directrix is y + 1 = 0.
- PART C

Answer any 8 questions. Each question carries 4 marks :

15. Derive the standard equation of the hyperbola.

 $(8 \times 4 = 32)$

- 16. Find the vertex, focus, directrix and length of the latus rectum of the parabola $8x^2 - 24y = 0$.
- 17. Find the condition that the line y = mx + c becomes tangent to the parabola $y^{2} = 4ax$.
- 18. Prove that the line lx + my + n = 0 touches the parabola $y^2 = 4ax$ if $ln = am^2$. 19. Prove that the polar of the focus of a parabola is the directrix.
- 20. Find the locus of the middle points of chords of the parabola $y^2 = 4ax$ which passes through the fixed point (h, k).
- 21. Prove that the semi-latus rectum is a harmonic mean between the segments
- of any focal chord of a parabola. 22. Find the equation of the chord joining two points whose ecentric angles are
- Find the polar equation of the hyperbola with center as pole.
- 24. Plot the locus of the equation $x^2 + y^2 8x 10 = 0$.
- $x^2 3xy + y^2 + 10x 10y + 21 = 0.$ 26. What conics do the following equation represent and find its centre

 $12x^2 - 23xy + 10y^2 - 25x + 26y = 14$.

25. Find the asymptotes of the conic whose equation is

27. Trace the conic $9x^2 + 24xy + 16y^2 - 2x + 4y + 1 = 0$.

28. Prove that the tangents at the extremities of a focal chord of a parabola intersect at right angles on the directrix.

-3-

PART - D

 $(2 \times 6 = 12)$

K24U 4134

29. Prove that the locus of the poles of normal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is the curve $\frac{a^2}{x^2} + \frac{b^2}{v^2} = (a^2 - b^2)^2$.

Answer any 2 questions. Each question carries 6 marks :

- 30. Prove that the line Ix + my + n = 0 is a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ if $a^2l^2 + b^2m^2 = n^2$.