Reg. No.:

VI Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - Regular/ Supplementary/Improvement) Examination, April 2023 (2016 Syllabus) BHM604A: DISCRETE FOURIER ANALYSIS

Time: 3 Hours

Max. Marks: 60

Answer any 4 questions out of 5 questions. Each question carries 1 mark: (4×1=4)

SECTION - A

1. Construct an orthonormal basis for $l^2(\mathbb{Z}_4)$. 2. Define a translation invariant transformation on $l^2(\mathbb{Z})$ and give an example.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks: (6x2=12)

- 3. Define pth stage wavelet filter sequence.
- 4. Define the downsampling and upsampling operators on $l^2(\mathbb{Z})$.
- 5. Define a homogeneous wavelet system for $l^2(\mathbb{Z})$.
- 6. If $z \in l^2(\mathbb{Z}_N)$, prove that $||z||^2 = (1/N)||\hat{z}||^2$. 7. Suppose $z_i, w \in l^2(\mathbb{Z}_N)$. For any $k \in \mathbb{Z}$ prove that $z * \tilde{w}(k) = \langle z, R_k w \rangle$ and
- $z \star w(k) = \langle z, R_k \tilde{w} \rangle$. 8. Suppose N is divisible by 2^p . Suppose u, $v \in l^2(\mathbb{Z}_N)$ are such that the system
- matrix A(n) is unitary for all n. Let $u_1 = u$ and $v_1 = v$, and, for all l = 2, 3, ... p. define u_i by the equation $u_i(n) = \sum_{k=0}^{2^{i-1}-1} u_i \left(n + \frac{kN}{2^{i-1}}\right)$ and v_i similarly with v_1 in place of u_1 . Prove that $u_1, v_1, u_2, v_2, ..., u_p, v_p$ is a p^{th} -stage wavelet filter sequence.
- P.T.O.

K23U 0550

11. Find out D(z) and U(z) if $z = ((i^n))_{n \in \mathbb{Z}}$. Also prove that $D \circ U(z) = z$ for $z = (z(n))_{n \in \mathbb{Z}}$.

12. Show that the trigonometric system $\{e^{in\theta}\}$ is an orthonormal set in $L^2([-\pi, \pi])$.

number) if and only if $\hat{z}(m) = \hat{z}(N - m)$ for all m.

9. Define $L^2([-\pi, \pi])$ and prove that it an inner product space.

13. Suppose w, $z \in l^1(\mathbb{Z})$. Prove that the set $\{R_{2k}w\}_{k \in \mathbb{Z}}$ is orthonormal if and only if

10. Prove that $I^2(\mathbb{Z})$ is complete.

 $|\hat{\mathbf{w}}(0)|^2 + |\hat{\mathbf{w}}(0+\pi)|^2 = 2 \text{ for all } 0 \in [0, \pi).$ 14. Suppose $u \in l^1(\mathbb{Z})$ and $\{R_{2k}u\}_{k\in\mathbb{Z}}$ is orthonormal in $l^2(\mathbb{Z})$. Define a sequence

-2-

- $v\in \mathit{l}^{1}(\mathbb{Z}) \text{ by } v(k)=(-1)^{k-1}\overline{u(1-k)}. \text{ Then prove that } \left\{\mathsf{R}_{2k}v\right\}_{k\in\mathbb{Z}} \cup \left\{\mathsf{R}_{2k}u\right\}_{k\in\mathbb{Z}} \text{ is a } l$ first-stage wavelet system in $l^2(\mathbb{Z})$.
- SECTION C Answer any 8 questions out of 12 questions. Each question carries 4 marks : (8×4=32) 15. Suppose $z \in l^2(\mathbb{Z}_N)$. Prove that z is real (i.e. every component of z is a real

16. Suppose $z, w \in l^2(\mathbb{Z}_N)$. Prove that $(z * w)^*(m) = \hat{z}(m) \hat{w}(m)$ for each m.

17. Find the eigenvalues and eigenvectors of $T: l^2(\mathbb{Z}_4) \to l^2(\mathbb{Z}_4)$ given by T(z)(n) = z(n) + 2z(n+1) + z(n+3).

only if $|\hat{\mathbf{w}}(\mathbf{n})| = 1$ for all $\mathbf{n} \in \mathbb{Z}_{N}$. 19. Suppose $M \in \mathbb{N}$, N = 2M and $u \in t^2(\mathbb{Z}_N)$ is such that $\{R_{2k}u\}_{k=0}^{M-1}$ is an orthonormal

prove that $\{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$ is a first-stage wavelet basis for $l^2(\mathbb{Z}_N)$.

set with M elements. Define $v \in l^2(\mathbb{Z}_{\mathbb{N}})$ by $v(k) = (-1)^{k-1} \overline{u(1-k)}$ for all k. Then

18. Let $w \in l^2(\mathbb{Z}_N)$. Prove that $\{R_k w\}_{k=0}^{N-1}$ is an orthonormal basis of $l^2(\mathbb{Z}_N)$ if and

20. Suppose $N = 2^n$, $1 \le p \le n$ and $u_1, v_1, u_2, v_2, ..., u_p, v_p$ form a p^{th} stage wavelet

21. Suppose $\hat{u} = (\sqrt{2}, \sqrt{2}, 0, 0)$ and $\hat{v} = (0, 0, \sqrt{2}, \sqrt{2})$. Compute u and v using

22. Suppose $T:L^2([-\pi,\pi))\to L^2([-\pi,\pi))$ is a bounded translation-invariant linear

transformation. Then prove that for each m=%, there exists λ_m =0 such that

IDFT and prove that $\{v, R_2^{}v, u, R_2^{}u\}$ is an orthonormal basis for $l^2(\mathbb{Z}_g)$.

computed using no more than 4N + Nlog₂N complex multiplications.

filter sequence. Suppose $z \in l^2(\mathbb{Z}_N)$. Prove that the output $\{x_1, x_2, x_3, ..., x_p, y_p\}$

of the analysis phase of the corresponding pth stage wavelet filter bank can be

$T(e^{im\theta})=\lambda_m e^{im\theta}.$ 23. Suppose $f \in L^1([-\pi, \pi))$ and $\langle f, e^{in\theta} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = 0$ for all $n \in \mathbb{Z}$.

Then prove that $f(\theta) = 0$ a.e.

24. Suppose $z \in l^2(\mathbb{Z})$ and $w \in l^1(\mathbb{Z})$. Then prove that $z_*w \in l^2(\mathbb{Z})$ and $||z * w|| \le ||w||, ||z||.$ 25. Suppose $b \in l^1(Z)$. For $z \in l^2(Z)$, define $T_b(z) = b*z$. Prove that T_b is bounded and translation invariant on $l^2(\mathbb{Z})$.

26. Let $p \in \mathbb{N}$. For i = 1, 2, ..., p, suppose $u_1, v_1 \in l^1(\mathbb{Z})$ and the system matrix $A_j(\theta) = 1/\sqrt{2} \begin{bmatrix} \hat{u}_j(\theta) & \hat{v}_j(\theta) \\ \hat{u}_j(\theta + \pi) & \hat{v}_j(\theta + \pi) \end{bmatrix}$

Then, prove that B is a complete orthonormal set for $l^2(\mathbb{Z})$.

is unitary for all $\theta \in [0, \pi)$. Define $f_1 = v_1$, $g_1 = u_1$ and inductively for l = 2, 3,, p,

 $f_{j} = g_{\ell-1} * U^{\ell-1}(v_{j}), \ g_{j} = g_{j-1} * U^{\ell-1}(u_{j}). \ Lot \ B = \{ R_{2^{\ell}k,\ell}^{-1} : k \in \mathbb{Z} \ , \ \ell=1,2,...,p \} \\ \cup \ \{ R_{2^{p_{k}}}g_{p}^{-} : k \in \mathbb{Z} \}.$

27. Let $T: l^2(\mathbb{Z}_N) \to l^2(\mathbb{Z}_N)$ be a translation-invariant linear transformation. Then,

28. Suppose $M \in \mathbb{N}$ and N = 2M. Let $u, v \in l^2(\mathbb{Z}_N)$. Then, prove that:

b) Equivalently, B is a first-stage wavelet basis for $\ell^2(\mathbb{Z}_{N})$ if and only if

u and v is unitary for each n = 0, 1, 2, ..., M - 1.

prove that each element of the Fourier basis F is an eigenvector of T and, in

Answer any 2 questions out of 4 questions. Each question carries 6 marks : (2x6=12)

particular, T is diagonalisable.

K23U 0550

a) $B = \{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1} = \{v, R_2v, R_4v, ..., R_{N-2}v, u, R_2u, R_4u, ..., R_{N-2}u\}$ is an orthonormal basis for $l^2(\mathbb{Z}_N)$ if and only if the system matrix A(n) of

 $|\hat{\mathbf{u}}(n)|^2 + |\hat{\mathbf{u}}(n+M)|^2 = 2$, $|\hat{\mathbf{v}}(n)|^2 + |\hat{\mathbf{v}}(n+M)|^2 = 2$ and $\hat{\mathbf{v}}(n) \ \overline{\hat{\mathbf{v}}(n)} + \hat{\mathbf{u}}(n+M) \ \overline{\hat{\mathbf{v}}(n+M)} = 0 \text{ for all } n=0, 1, ..., M-1.$

29. Suppose $f: [-\pi, \pi) \to \mathbb{C}$ is continuous and bounded say $|f(\theta)| \leq M$ for all θ .

 $0 \in [-\pi, \pi).$ 30. Suppose l is a positive integer, $g_{l-1} \in l^2(\mathbb{Z})$ and $\{R_{2^{l-1}k}g_{l-1}\}_{k\in\mathbb{Z}}$ is orthonormal in $l^2(\mathbb{Z})$. Suppose $u, v \in l^1(\mathbb{Z})$ and system matrix $A(\theta)$ of u and v is unitary for all θ .

If $\langle f, e^{in\theta} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = 0$ for all $n \in \mathbb{Z}$, then prove that f(0) = 0 for all

Define $f_i = g_{i-1} * U^{i-1}(v)$, $g_i = g_{i-1} * U^{i-1}(u)$. Then prove that $\{R_{2^lk}^{-l}f_i\colon k\in\mathbb{Z}\}\cup\{R_{2^lk}^{-l}g_i^-\colon k\in\mathbb{Z}\} \text{ is orthonormal.}$