Name :

VI Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - Regular/ Supplementary/Improvement) Examination, April 2023 (2016 Syllabus)

BHM 602: TOPOLOGY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions out of the five questions. Each question carries $(4 \times 1 = 4)$ 1 mark:

- Give an example of a topology on the set X = {1, 2, 3, 4}.
- Define an embedding.
- Give an example of a nonempty set whose interior is empty.
- 4. Give an example of space that is Lindeloff but not compact. State Tietze characterisation of normality.
- SECTION B

Answer any six questions out of the nine questions. Each question carries $(6 \times 2 = 12)$ 2 marks: 1. Let (X, τ) be a space and $\mathcal{B} \subset \tau$. If for any $x \in G$, where G is an open set,

2. Prove that in discrete topology, the only convergent sequences are those which are eventually constant.

there exist $B \in \mathcal{B}$ such that $x \in B \subset G$, then prove that \mathcal{B} is a base for τ .

- 3. Give an example, with proper justification, of two distinct topologies on a set X which induces the same subspace topology on some $Y \subset X$. 4. Is $\overline{A} \cap \overline{B} = \overline{A \cap B}$? Justify your answer.

P.T.O.

 $(8 \times 4 = 32)$

neighbourhood of each of its points.

K23U 0548

5. Prove that a subset of a topological space is open if and only if it is a

- Prove that the continuous image of a compact space is compact.
- 7. Let C be a connected subset of a space X. For any set D such that $C \subset D \subset \vec{C}$ prove that D is connected.
- 8. Prove that limits of sequences are unique in a Hausdorff space. 9. Prove that, for any x in a regular space X and an open set G containing x,
 - there exist an open set H containing x such that $\bar{H} \subset G$. SECTION - C

-2-

Answer any eight questions out of the twelve questions. Each question carries

- 1. Define cofinite topology on a set X. Show that it is a topology on X. 2. Given a collection $\mathcal S$ of subsets of X_r is there a topology τ on X having $\mathcal S$ as a sub-base? Justify your answer.
- 3. Prove that metrisability is a hereditary property. 4. Let (X, τ) , (Y, \mathcal{U}) be spaces and $f: X \to Y$ be function. Prove that for every $V\in \mathcal{U}$ we have $f^{-1}(V)\in \tau$ if there exists a sub-base \mathcal{S} for \mathcal{U} such that
- 6. Prove that there is a one-to-one correspondence between the set of topologies on a set and the set of all nearness relations on that set.

5. Prove that a subset A of a space X is dense in X if and only if for every non-

- 7. Let (X, τ) , be a space and $A \subset X$. Prove that A is a compact subset of X if and only if the subspace $(A, \tau/A)$ is compact. 8. Give an example of a property which is weakly hereditary but not hereditary. Justify your answer.
- 9. For $\mathbb R$ with usual topology, prove that if $X \subset \mathbb R$ is connected then X is an interval. Prove that all metric spaces are T₄.

closed.

 $f^{-1}(V) \in \tau$ for every $V \in S$.

empty open subset B of X we have $A \cap B \neq \emptyset$.

-3-

containing x. Prove that there exist open subsets U, V such that $x \in U$, $F \subset V$ and $U \cap V = \phi$. Further, prove that a compact subset of a Hausdorff space is

11. Let X be a Hausdorff space, x ∈ X and F be a compact subset of X not

Prove that every regular, Lindeloff space is normal.

K23U 0548

- SECTION D Answer any two questions out of the four questions. Each question carries $(2 \times 6 = 12)$ 6 marks: 1. a) Prove that, if a sequence in a cofinite topology is convergent then there is at most one term in the sequence which repeats infinitely often.
 - has a countable subcover. Let X be a set and let θ : P (X) → P(X) such that i) $A \in P(X) \Rightarrow A \subset \theta(A)$,

b) If a space X is second countable then prove that every open cover of X

iii) 0 is idempotent and

ii) $\theta(\phi) = \theta$,

- iv) θ commutes with finite unions. Prove that there is a unique topology τ on Xsuch that θ coincides with the closure operator associated with τ . State and prove Lebesgue covering Lemma.
- a) Prove that a space X is T₁ if and only if for any x ∈ X the singleton set {x} is closed. b) Prove that regularity is a hereditary property.