Reg. No.:

Name :

V Semester B.Sc. Honours in Mathematics Degree (CBCSS – Supplementary/Improvement) Examination, November 2023 (2018 - 2020 Admissions) BHM 502 : ADVANCED COMPLEX ANALYSIS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- 1. Evaluate \((1 + it)^2 dt .
- State fundamental theorem of algebra.
- 4. Find the singular points of $f(z) = \frac{z+1}{z^3(z^2+1)}$.

Write the Maclaurin series expansion of f(z) = e^z.

- State Rouche's theorem.

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6x2=12)

6. Find the value of the integral $\int \overline{z} dz$, where C is $z = 2e^{i\theta}$, $\frac{-\pi}{2} \le \theta \le \frac{\pi}{2}$.

SECTION - B

- 7. Without evaluating the integral, show that $\left| \int_C \frac{z+4}{z^3-1} dz \right| \le \frac{6\pi}{7}$, where C is |z|=2.
- 8. State Cauchy Goursat theorem and use this theorem to $\int f(z)dz$, where
- $f(z) = ze^{-z}$ and the contour C is |z| = 1. Prove that every absolute convergent series of complex numbers is convergent.

State Taylor's theorem.

P.T.O.

 $(8 \times 4 = 32)$

K23U 2642

- 11. Show that $\frac{1}{4z-z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}$, when 0 < |z| < 4. 12. Show that $\int_{C} \exp\left(\frac{1}{z^2}\right) dz = 0$, where C is positively oriented unit circle.
- 13. Find the residue at z = 0 of the function $f(z) = \frac{1}{z + z^2}$.

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

- State Jordan's lemma.

 $R_1 = |z_1 - z_0|$

that $f(z) = (z - z_0)^m g(z)$.

State and prove Cauchy integral formula.

SECTION - C

-2-

State and prove Liouville's theorem.

- 17. Let $f(z) = \pi \exp(\pi \overline{z})$ and C is the boundary of the square with vertices at the points 0, 1, 1 + i and i, the orientation of C being in the counterclockwise direction.
- Use parametric representation for C or legs of C to evaluate ∫ f(z) dz.
- 18. Suppose that $z_n = x_n + iy_n$, n = 1, 2, ... and z = x + iy. Prove that $\lim_{n \to \infty} z_n = z$ if and only if $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$. 19. Obtain the Taylor's series expansion of cos z about $z = \frac{\pi}{2}$.
- 20. If a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges when $z=z_1 (z_1 \neq z_0)$, prove that it is absolutely convergent at each point z in the open disc $|z - z_0| < R_1$, where
- 21. State and prove Cauchy residue theorem.
- 22. Evaluate $\int_{C} \frac{5z-2}{z(z-1)} dz$, where C is the circle |z|=2 in the positive sense. 23. Let f be a function analytic at a point z₀. Prove that f has a zero of order m at \mathbf{z}_0 if and only if there is a function \mathbf{g} , which is analytic and non-zero at \mathbf{z}_0 such
- 24. Use residues to evaluate $\int_{x}^{x} \frac{dx}{x^2 + 1}$.

ii) C_{ρ} denotes the upper half of a circle $|z-x_0|=\rho$, where $\rho < R_2$ and clockwise direction is taken.

residue B₀;

Suppose that

i) a function f(z) has a simple pole at a point $z = x_0$ on the real axis, with a Laurent series representation in a punctured disk $0 < |z - x_0| < R_2$ and with

Prove that $\lim_{\rho \to 0} \int_{C_{\rho}} f(z) dz = -B_0 \pi i$. 26. Evaluate $\int_{0}^{\infty} \frac{d\theta}{5 + 4 \sin \theta}$.

27. State and prove maximum modulus principle.

SECTION - D Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2×6=12)

- 28. Find all Laurent series of $f(z) = \frac{-1}{(z-1)(z-2)}$ about z=0. 29. If a function f is analytic everywhere in the finite plane except for a finite number
- of singular points interior to positively oriented simple closed contour C, then prove that $\int_{C} f(z) dz = 2\pi i \operatorname{Res}_{z=0} \left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right) \right].$
- 30. Use residues to find the Cauchy principal values of the improper integral $\int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^2 + 2x + 2}$