Reg. No.: Name :

V Semester B.Sc. Honours in Mathematics Degree (CBCSS - OBE - Regular) **Examination, November 2023** (2021 Admission)

5B20BMH: INTEGRAL TRANSFORMS AND PARTIAL DIFFERENTIAL **EQUATIONS**

Max. Marks: 60 Time: 3 Hours

SECTION - A

Answer any four questions from the following. Each question carries 1 mark. $(4 \times 1 = 4)$

- 1. Let f(t) = 1, $t \ge 0$. Find F(s).
- Define the Heaviside Function.
- State the convolution theorem for Fourier Integrals.

3. Find the fundamental period of the function $f(x) = \sin 3x$.

- 5. Give an example of a two dimensional partial differential equation.
- SECTION B

Answer any six questions. Each question carries 2 marks.

6. Given that $f(t) = t^2 + t + 7$. Find F(s).

(6×2=12)

- Find the Laplace transform of coshat.
- 8. Find the Fourier coefficient a_0 for the function $f(x) = x, -\pi < x < \pi$ with
- $f(x+2\pi)=f(x).$ Show that f = const is periodic with any period.

P.T.O.

Show that the function f(x) = xsin2x is even.

K23U 2647

-2-

- 11. f(x) = 1, $0 < x < \infty$ has no Fourier Cosine Transform. Give reasons.
- 12. What is a Fourier Cosine Integral ? Explain.
- 13. Solve $u_{xx} + u_x = 0$ like an ODE.
- 14. If u₁ and u₂ are solutions of a homogeneous linear PDE in some region R, then
- $c_1u_1+c_2u_2$ with any constants c_1 and c_2 is also a solution of that PDE in the region R. SECTION - C $(8 \times 4 = 32)$

Answer any eight questions. Each question carries 4 marks each.

15. Solve y'' - y = t, y(0) = y'(0) = 1. 16. Find the inverse of $\frac{1}{s(s^2 + w^2)}$.

- 17. State and prove the first shifting theorem.
- 18. Find the Fourier series of the function

$$f(x) = \begin{cases} 0, & -2 < x < -1, \\ k, & -1 < x < 1, \\ 0, & 1 < x < 2 \end{cases}$$
 with $p = 2L = 4$

- 19. What is a "Fourier Cosine Series" ? Write the formula for corresponding Fourier coefficients.
- 20. Show that the complex Fourier coefficients of an even function are real. 21. Find the Fourier cosine and sine transforms of the function $f(x) = \begin{cases} k, 0 < x < a \\ 0, x > a \end{cases}$
- 22. With the usual notations, show that $\mathscr{F}_{c}\{f'(x)\} = -\sqrt{\frac{2}{\pi}}f(0) + w\mathscr{F}_{s}\{f(x)\}.$ 23. Find the Fourier transform of $f(x) = e^{-ax}$ if x > 0 and f(x) = 0 if x < 0; here a > 0.

26. Find the temperature u(x, t) in a laterally insulated copper bar 80 cm long if the initial temperature is 100sin (π/180)°C and the ends are kept at 0°C. How long

will it take for the maximum temperature in the bar to drop to 50°C [Physical data for copper: density 8.92 gm/cm³, specific heat 0.092 cal/(gm°C), thermal

 $(2 \times 6 = 12)$

conductivity 0.95 cal/(cmsec°C))].

SECTION - D

24. Verify that $u = e^{x}\cos y$ is a solution of the two dimensional Laplace equation.

Answer any two questions. Each question carries 6 marks each. 27. i) Find the inverse transform of $\ln \left(\frac{s^2 + w^2}{s^2} \right)$.

and obtain from it the actual Fourier series.

25. Find the normal form and solution of the PDE $u_{xx} + 9u_{yy} = 0$.

- ii) With the usual notations, prove that $\mathcal{L}(af(t) + bg(t)) = a\mathcal{L}(f(t)) + b\mathcal{L}(g(t))$.
- 29. i) Find the Fourier integral representation of the function $f(x) = \begin{cases} 1, |x| < 1 \\ 0, |x| > 1 \end{cases}$

28. Find the complex Fourier series of $f(x) = e^x$ if $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$

- ii) Derive the formula for the Fourier transform of the derivatives. 30. Derive the D'Alembert's solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.