Reg. No. : Name :

> V Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. -Supplementary/Improvement) Examination, November 2023 (2018 - 2020 Admissions)

BHM 504 : DIFFERENTIAL GEOMETRY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions from the following. Each question carries 1 mark.

- Sketch the vector field X(p) = (1,0) on R². Define a level set.
- 3. Find the regular points of the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 + x_2^2$.
- Define an n surface in Rⁿ⁺¹. 5. Find the speed of the parametrized curve $\alpha(t) = (\sin t, \cos t)$.
- SECTION B

Answer any six questions. Each question carries 2 marks. 6. Sketch the graph of the function $f(x_1, x_2) = x_1 - x_2$.

 $(6 \times 2 = 12)$

- 7. Show that graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function
- $F: \mathbb{R}^{n+1} \to \mathbb{R}$. 8. Does the Mobius strip is orientable ? Justify your answer.
- 9. Find $\nabla f(p)$ for $f(x_1, x_2) = x_1^2 + x_2^2$ at p = (1, 1).
- 10. Show that the gradient of f at $p \in f^{-1}$ (c) is orthogonal to all vectors tangent to
- f-1(c) at p.

P.T.O.

K23U 2644

11. Show by an example that the set of all vectors tangent at a point p of a level

set need not in general be a vector subspace of R_p^{n+1} . 12. With the usual notations, show that $(X \dotplus Y) = \dot{X} + \dot{Y}$.

-2-

- Prove that geodesics have constant speed.
- 14. Given that X is parallel along α . Show that X has constant length.
- SECTION C

Answer any eight questions. Each question carries 4 marks each.

15. Does the integral curve of a vector field cross itself? Justify your answer.

 $(8 \times 4 = 32)$

- 16. Prove that $x_1 + 3x_2 2x_3 = 1$ is an 2-surface in \mathbb{R}^3 .
- 17. Does the parametrized curve $a(t) = (-\cos t, t, -\sin t)$ is a geodesic in the cylinder $x_1^2 + x_3^2 = 1$ in R^3 . Justify your answer.
- 18. Compute $\Delta_{v} f$ where $f(x_1, x_2) = x_1^3 3x_2^2 + 3x_1x_2^2$, v = (-1, 0, -1, 0). 19. Let S be an n – surface in R^{n+1} and let, $\alpha: I \to S$ be a parametrized curve, and
- Prove that an n sphere is connected.

20. Find the integral curve through (-1, 0) of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, x_1)$.

let X be a vector field tangent to S along α . Prove that (fX)' = f'X + fX'.

- 22. Sketch the cylinder over the graph of $f(x) = \sin x$. State and prove Lagrange Multiplier Theorem.
- 24. Let a, b, $c \in R$ such that $ac b^2 > 0$. Show that the maximum and minimum
- values of the function $g(x_1, x_2) = x_1^2 + x_2^2$ on the ellipse $ax_1^2 + 2bx_1x_2 + cx_2^2 = 1$ are
- of the form $\frac{1}{\lambda_1}$, $\frac{1}{\lambda_2}$ where λ_1 , λ_2 are the eigen values of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. 25. Sketch the surface of revolution obtained by rotating the curve $x_2^2 = x_1^2$, $0 < x_1^2 < 1$ about the x_1 – axis. 26. Compute the Weingarten map for the cylinder $x_1^2 + x_2^2 = 1$ in R^3 .

the curvature of C at the point (t, g(t)) is

Let g: I→R be a smooth function and let C denote the graph of g. Show that

-3-

SECTION - D

Answer any two questions. Each question carries 6 marks each.

K23U 2644

 $(2 \times 6 = 12)$

- 28. Prove the following: Let S be an n surface in Rⁿ⁺¹ and let p∈S and let v∈S_p. Then there exist an open interval I containing 0 and a geodesic α : I \rightarrow S such that i) $\alpha(0) = p$, $\dot{\alpha}(0) = v$
 - ii) If $\beta: \overline{I} \to S$ is any other geodesic in S with $\beta(0) = 0$, $\dot{\beta}(0) = v$, then $\overline{I} \subset I$ and

Prove that the Weingarten map is self-adjoint.

 $\alpha(t) = \beta(t)$ for all $t \in \tilde{I}$.

30. With the usual notations, prove that the parallel transport $P_a: S_p \rightarrow S_q$ along α is a vector space isomorphism which preserves dot product.