Reg. No.: .....

V Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. - OBE - Regular) Examination, November 2023 (2021 Admission)

5B22BMH: COMPLEX ANALYSIS

Time: 3 Hours

Max. Marks: 60

# SECTION - A

Answer any four questions from the following. Each question carries 1 mark.  $(4 \times 1 = 4)$ 

- Does the point 1 i is lie on the upper half complex plane? Justify your answer.
- What is an open set?
- Evaluate ∫<sub>0</sub><sup>1+1</sup>z<sup>2</sup>dz. 4. Give an example of a convergent sequence.
- 5. Find the zeros of the function  $f(z) = 1 + z^2$ .
- SECTION B

8. Show that  $\oint_C \frac{dz}{z} = 2\pi i$  where C is the unit circle centred at the origin oriented

Answer any six questions. Each question carries 2 marks. Write the polar form of the complex number 1 + i.

(6×2=12)

- Show that cos z = cos x cosh y i sin x sinh y.
- counter clock wisely.
- 9. State Cauchy's integral theorem.
- 10. Evaluate  $\oint_C xdz$  where C is the line segment joining 1 to 1 + 2i.
- 11. If  $z_1 + z_2 + \dots$  converges, show that  $\lim_{m \to \infty} z_m = 0$ .

P.T.O.

## 12. When we say a series is absolutely convergent? Give an example.

K23U 2649

- 13. Find the Laurent series of  $ze^{\frac{1}{z}}$  with centre 0.
- 14. Find the residue of  $f(z) = \frac{\sin z}{z^4}$  at z = 0.
- SECTION C Answer any eight questions. Each question carries 4 marks.

-2-

15. Show that Re(sin z) is harmonic. Show that the set of values of ln (i²) is differ from the set of values of 2 ln(i).

 $(8 \times 4 = 32)$ 

- 17. Show that  $\cosh^2 z \sinh^2 z = 1$ .
- 18. Find an upper bound for the absolute value of the integral  $\oint_c z^2 dz$ , C is a straight
- line segment from 0 to 1 + i.

otherwise.

- 19. Sketch and represent parametrically the curve |z 2 + 3i| = 4 counter clock wisely. Show that if a sequence converges, its limit is unique.
- 21. State and Prove the Ratio Test. 22. Show that the geometric series  $\sum_{m=0}^{\infty} q^m$  converges if |q| < 1 and diverges

23. Find the radius of convergence of the power series  $\sum_{n=0}^{\infty} \left[ 1 + (-1)^n + \frac{1}{2^n} \right] z^n$ .

- 24. Integrate  $f(z) = \frac{1}{z^3 z^4}$  clockwise around the circle  $|z| = \frac{1}{2}$ . Define the following terms with suitable examples. i) Pole of order m,
- 26. State the Residue theorem.

ii) Essential singularity.

### ii) Find the derivative of $f(z) = (z^2 + i)^3$ . 28. State Cauchy's integral formula and using Cauchy's integral formula evaluate

 $(2 \times 6 = 12)$ 

K23U 2649

counter clockwisely  $\oint_C \frac{dz}{z^2-1}$  where C: |z+1|=1. 29. i) Find the Maclaurian's series for  $f(z) = \frac{1}{z^2 + 1}$ .

SECTION - D

30. Evaluate the following integral, where C is the ellipse  $9x^2 + y^2 = 9$ , counter clockwise  $\oint_C \left[ \frac{ze^{\pi z}}{z^2 - 16} + ze^{\pi/z} \right] dz$ .

ii) Find the Taylor series for  $f(z) = \frac{1}{z}$  about z = 1.

Answer any two questions. Each question carries 6 marks.

27. i) Find and sketch the set of points given by |z + 1| = |z - 1|.