Reg. No.:.... Name :

V Semester B.Sc. Honours in Mathematics Degree (CBCSS - Supplementary/ Improvement) Examination, November 2023 (2018 – 2020 Admissions)

BHM505 A: INTEGRAL EQUATIONS AND MEASURE THEORY

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions out of five questions. Each question carries one mark.

 $(4 \times 1 = 4)$

- 1. Let $f_n(x) = \frac{e^{-ix}}{\sqrt{x}}$. Check the uniform convergence of this sequence of functions.
- 2. Find $\lim \sup \left(1 + \frac{1}{n}\right)$.
- 3. Define σ-finite measure.
- 4. Write Fredholm integral equation.
- SECTION B

Define characteristic function of an integral equation.

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6x2=12)

- 6. Define characteristic function. Give an example.
- 7. Define step function and integral of step function.
- 8. Let μ be a measure defined on a $\sigma\text{-algebra }X.$ If $E,\,F\in\,X$ and $E\subseteq F,$ then show that $\mu(E) \leq \mu(F)$.
- 9. If μ is a measure on X and A is a fixed set in X, then show that the function λ , defined by $E \in X$, by $\lambda(E) = \mu(A \cap E)$ is a measure on X.

P.T.O.

K23U 2645

10. Let (X, \mathbf{X}, μ) be a measure space and let (E_n) is a sequence in \mathbf{X} . Show that $\mu(\lim \inf E_n) \le \lim \inf \mu(E_n).$ 11. If $f \in L$, λ is defined on X to R, by $\lambda(E) = \int_E f \ d\mu$. Then show that λ is a charge.

-2-

- 12. If f is measurable, g is integrable and $|f| \le |g|$, then show that f is integrable and
- $\int |f| d\mu \leq \int |g| d\mu$. Define Symmetric-Kernel.
- 14. Find the Wronskian of $u(\xi) = \xi$, $v(\xi) = \frac{1}{\xi}$.
- SECTION C

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

15. Define Riemann-integral and Lebesgue integral of a function. Define σ-algebra and give an example. Define Borel algebra.

 $(8 \times 4 = 32)$

- 17. Show that the following statements are equivalent for a function f on X to R.
- b) For every $\alpha \in R$, the set $A_{\alpha} = \{x \in X : f(x) \ge \alpha\}$, belongs to X. c) For every $\alpha \in R$, the set $A_{\alpha} = \{x \in X : f(x) \le \alpha\}$, belongs to X.
- d) For every $\alpha \in R$, the set $A_{\alpha} = \{x \in X : f(x) < \alpha\}$, belongs to X. 18. Let μ be a measure defined on a σ -algebra X. If (E_n) is an increasing sequence

in X, then show that $\mu\left(\bigcup_{n=1}^{\infty} E_{n}\right) = \lim \mu\left(E_{n}\right)$.

a) For every $\alpha \in R$, the set $A_{\alpha} = \{x \in X : f(x) > \alpha\}$, belongs to X.

- 19. Define Charge. Show that sum and difference of two charge is charge. 20. Let λ denote Lebesgue measure defined on the Borel algebra B of R. If E consist
- of a single point then show that $E \in B$ and $\lambda(E) = 0$. 21. Let (A_n) be a sequences of subsets of a set X. If A consist of all $x \in X$, which
- belongs to infinitely many of the sets A_n , show that $A = \bigcup_{m=1}^{\infty} \left| \bigcap_{n=m}^{\infty} A_n \right|$. 22. Show that a sum f + g of functions in L belongs to L and $\int (f + g) d\mu = \int f d\mu + \int g d\mu$.

$\frac{d^2y}{dx^2} + \lambda y = 0$, with y(0) = 0, y'(0) = 0.

K23U 2645

25. Form the differential equation with boundary condition, from the Fredholm integral equation $y(x) = \lambda \int_0^x \frac{\xi}{1} (1-x) y(\xi) d\xi + \lambda \int_x^1 \frac{x}{1} (1-\xi) y(\xi) d\xi$. 26. Write down the four properties that have to be satisfied by Green's function of

-3-

23. If f is an X-measurable real valued functions and if f(x) = 0 for μ -almost all x in

24. Form the Volterra integral equation corresponding to the initial value problem

X, then show that $f \in L(X, \mathbf{X}, \mu)$ and $\int f d\mu = 0$.

a second order differential equation with homogeneous boundary conditions. SECTION - D Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2×6=12)

Then show that, the functions cf, f2 and f + g are measurable.

27. Let f and g be measurable real-valued functions and let c be any real number.

28. If ϕ and ψ are simple functions in M⁺ (X, X) and c \geq 0, then show that a) $\int c\phi d\mu = c \int \phi d\mu$. b) $\int (\phi + \psi) d\mu = \int \phi d\mu + \int \psi d\mu$.

29. State and prove Lebesgue dominated convergence theorem.

30. Obtain the most general solution of $y(x) = \lambda \int_0^1 (1 - 3x\xi) y(\xi) d\xi + F(x)$, Where F(x) = 0 under the assumption $\lambda = 2, -2, \lambda \neq \pm 2$.