Reg. No.:

Name :

IV Semester B.Sc. Honours in Mathematics Degree (CBCSS - OBE-Regular) Examination, April 2023 (2021 Admission) 4B14 BMH: ADVANCED REAL ANALYSIS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions. Each question carries one mark.

 $(4 \times 1 = 4)$

- 1. Find the absolute maximum and absolute minimum of $f(x) = x^2$ on the interval [0, 2].
- 2. Prove that every constant function on [a, b] is in R [a, b].
- 3. Define norm of a partition and find norm of the partition P = (0, 1, 2, 4).
- 4. Show that $\lim_{n \to \infty} \left(\frac{x}{n} \right)^* = 0$. 5. Find the radius of convergence of $\sum_{n=0}^{\infty} x_{\cdot}^{n}$.
- SECTION B

Answer any 6 questions. Each question carries two marks.

6. Define step function with example.

8. State fundamental theorem (first form and second form).

 $(6 \times 2 = 12)$

- Then the set $f(I) = \{f(x) : x \in I\}$ is a closed bounded interval.
- 9. Prove that if $f \in R[a, b]$ with $f([a, b]) \subseteq [c, d]$ and let $\phi : [c, d] \to \mathbb{R}$ be continuous. Then the composition $\phi \circ f \in R$ [a, b].

7. Prove that if I be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I.

P.T.O.

10. Prove that if $f \in R$ [a, b] and if α , β , γ are any numbers in [a, b] then

K23U 1181

- $\int_{\alpha}^{\beta} f = \int_{\alpha}^{\gamma} f + \int_{\gamma}^{\beta} f$ 11. Let (f_n) be a sequence of continuous functions on a set $A \subseteq \mathbb{R}$ and suppose that (f_n) converges uniformly on A to a function $f\colon\thinspace A\to\mathbb{R}$. Then prove that
- f is continuous on A. 12. Prove that A sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $\|f_n - f\|_A \to 0$.
- 13. Show that $\int_{1}^{\infty} \frac{1}{y} dx$ diverges. 14. Show that $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx$ converges.

is an interval.

Answer any 8 questions. Each question carries four marks. 15. Prove that if I be an interval and let $f:I\to\mathbb{R}$ be a continuous on I. Then f(I)

SECTION - C

16. Let I = [a, b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be a continuous

on I. Then prove that f is bounded on I.

 $(8 \times 4 = 32)$

- 17. Prove if $f: A \to \mathbb{R}$ is Lipchitz function then f is uniformly continuous on A. What about the converse?
- 18. State and prove squeeze theorem. 19. Prove that if $f \in R$ [a, b] then the value of the integral uniquely determined.
- 20. If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b], then prove $f \in R$ [a,b]. 21. Show that sequence $F_n(x) = x^n(1-x)$ is converges uniformly on
- A = [0, 1].

-3-

23. Show that (xn) converges pointwise but not uniformly convergent.

24. What about the uniform convergence of $\sum \left(\frac{1}{x^2+n^2}\right)$.

. (1881) 23 123 13 14 14 13 12 14 15 16 16 1 1881 14 188 1 108 15 16 16 16 16

 $(2 \times 6 = 12)$

K23U 1181

25. Let f be a nonincreasing function on $[1, \infty)$ such that $f(x) \ge 0$. Then prove that $\sum_{r=1}^{\infty} f(n)$ will converges if $\int_{1}^{\infty} f(x) dx$ converges and $\sum_{n=1}^{\infty} f(n)$ diverges

22. State and prove differentiation theorem.

if $\int_{-\infty}^{\infty} f(x) dx$ diverges. 26. Show that $\beta(m,n) = \frac{\Gamma m, \Gamma n}{\Gamma(m \neq n)}$.

SECTION - D

State and prove maximum-Minimum Theorem. 28. State and Prove Cauchy Criterion for Riemann integrable functions.

29. Let (f_n) be a sequence of functions in R [a, b] and suppose that (f_n) converges

Answer any 2 questions. Each question carries six marks.

- uniformly on [a, b] to f. Then prove that $f \in R[a, b]$ and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.
- 30. Show that $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$ is conditionally convergent.