Reg. No.:

Name :

IV Semeser B.Sc. Honours in Mathematics Degree (CBCSS -Supplementary/Improvement) Examination, April 2023 (2017 - 2020 Admissions)

BHM 401 : ADVANCED REAL ANALYSIS AND METRIC SPACES

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark: (4×1=4)

- 1. State Cauchy Schwarz inequality. 2. Define derived set.
- Define norm of a partition.
- 4. Find $\lim \frac{x}{x+n} \forall x \in \mathbb{R}_{+} x \ge 0$. Define open set.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks : $(6 \times 2 = 12)$

- Evaluate ∫ sin√t / √t dt.
- 7. Prove that step functions are Riemann integrable.
- 8. Let S be any nonempty set and B(S) denote the set of all real or complex valued functions on S, each of which is bounded, define $d(f,g) = Sup \mid f(x) - g(x) \mid f,g \in B(S). \text{ Show that } d(f,g) \text{ is metric on } B(S).$ 9. Check whether the sequence $(g_n) = x^n$ converge uniformly on [0, 1].
- 10. Prove that a convergent sequence in a metric space is a Cauchy sequence.

P.T.O.

K23U 1186

11. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. 12. Is the intersection of an infinite number of open sets open ? Justify your

13. Prove that A mapping $f: X \to Y$ is continuous on X if and only if f^{-1} (F) is closed in X for all closed subsets F of Y.

-2-

- 14. If $\sum a_n$ is an absolutely convergent series, then prove that the series $\sum a_n$ sin nx is uniformly convergent.
- SECTION C Answer any 8 questions out of 12 questions. Each question carries 4 marks:

15. Prove that if a function is Riemann integrable on [a, b] then prove that it is bounded on [a, b].

- State and prove Squeeze theorem. 17. State and prove fundamental theorem of Calculus (first form).
- 18. State and prove Cauchy-Hadamard theorem.
- 19. Find $\lim \frac{\sin(nx+n)}{n}$ for $x \in \mathbb{R}$. Is this convergence uniform? Justify. 20. Let X be a nonempty set and d denote the discrete metric. Then show that sequence $x_n \rightarrow x$ in (X, d) if and only if all the x_n , except possibly finitely many,
- 21. Let N denote the set of natural numbers. Define $d(m, n) = \left| \frac{1}{m} \frac{1}{n} \right| m, n \in \mathbb{N}$. are equal to x. ts (N,d) a complete metric space ? Justify.
- 22. State and prove Minkowski's Inequality (finite sum). 23. Let F be a subset of the metric space (X, d). Then prove that the set of limit points of F, is a closed subset of (X, d). 24. Give an example of a subset Y of a metric space (X, d) for which $\overline{Y^0} \neq (\overline{Y})^0$.

-3-

25. If a Cauchy sequence of points in a metric space (X, d) contains a convergent subsequence, then prove that the sequence converges to the same limit as the

26. The space B(S) of all real-or complex-valued functions f on S, each of which is bounded, with the uniform metric $d(f,g) = Sup \left| f(x) - g(x) \right| f, \, g \in B(S)$. Prove that B(S) with this metric is complete.

SECTION - D

K23U 1186

- Answer any 2 questions out of 4 questions. Each question carries 6 marks : $(2 \times 6 = 12)$ 27. Let $f: [a, b] \to \mathbb{R}$ and let $c \in (a, b)$. Then prove that $f \in R[a, b]$ if and only if the restrictions to [a, c] and [c, b] are both Riemann integrable. 28. State and prove cauchy Criterion for uniform convergence of sequence of
- 29. Define pseudometric. Let X be the space of all sequences of numbers. Let $x = \{x_i\}$ and $y = \{y_i\}$ be elements of X. Define $d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|x_i - y_i|}{1 + |x_i - y|}$. Is d a pseudometric on X? Justify.
- 30. Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f:A\to Y$ is continuous at $a\in A$ if and only if whenever a sequence $\{x_n\}$ in Aconverges to a, the sequence $\{f(x_n)\}$ converges to f(a).