Reg. No.:

Name :

IV Semester B.Sc. Honours in Mathematics Degree (CBCSS - Supplementary/Improvement) Examination, April 2023 (2017 - 2020 Admissions) BHM 402: ADVANCED ABSTRACT ALGEBRA

Time: 3 Hours

Justify.

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- 1. Let $\Phi: G \to G'$ be a homomorphism of groups. Define $Ker(\Phi)$. 2. Define inner automorphism of a group G.
- 3. Is the map $\Phi: \mathbb{Z} \to \mathbb{Z}$, with $\Phi(x) = 2x$ for $x \in \mathbb{Z}$ is a ring homomorphism?
- 4. Find the characteristic of the ring $\mathbb{Z}_3 \times \mathbb{Z}_4$
- 5. Find the product of the polynomials f(x) = 4x 5 and $g(x) = 2x^2 4x + 2$ in $\mathbb{Z}_8[x]$.
- SECTION B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. $(6 \times 2 = 12)$

7. Find all left cosets of the subgroup $3\mathbb{Z}$ of \mathbb{Z} .

6. State and prove Theorem of Lagrange.

- 8. Prove that a factor group of a cyclic group is cyclic.
- 9. Compute the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_6)/\langle (0, 2) \rangle$.
- 11. For integers r and s with gcd (r, s) = 1, prove that the rings \mathbb{Z}_{rs} and $\mathbb{Z}_r \times \mathbb{Z}_s$ are isomorphic.

10. Let G be a group. Define Z(G) and prove that Z(G) is a normal subgroup of G.

P.T.O.

12. Show that 211213 - 1 is not divisible by 11.

K23U 1187

- 13. Let $\Phi_3\colon \mathbb{Z}_7[x] o \mathbb{Z}_7$ be the evaluation homomorphism. Compute
- $\Phi_3[(x^4+2x)(x^3-3x^2+3)].$ 14. Verify whether $f(x) = x^3 + 3x + 2$ is irreducible over \mathbb{Z}_5 .
- SECTION C Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

-2-

15. Let γ be the natural map of $\mathbb Z$ into $\mathbb Z_n$ given by $\gamma(m)=r,$ where r is the remainder given by the division algorithm when m is divided by n. Show that γ is a

- homomorphism. 16. Let $\Phi:G\to G'$ be a group homomorphism and let $H=Ker(\Phi)$. Then prove that $\{x \in G | \Phi(x) = \Phi(a) \}$ is the left coset aH of H.
- 17. Let H be a subgroup of G. Prove that the relation ~ defined by a ~ b if and only if $a^{-1}b \in H$ is an equivalence relation on G. 18. Prove that M is a maximal normal subgroup of G if and only if G/M is simple.
- 19. Prove the falsity of the converse of the theorem of Lagrange.
- 20. Let G be a group. Prove that the set of all commutators $aba^{-1}b^{-1}$ for a, $b\in G$ generates a subgroup C (the commutator subgroup) of G.
- 21. Solve the equation $x^2 5x + 6 = 0$ in \mathbb{Z}_{12} . 22. Prove that every field is an integral domain. 23. State and prove Euler's theorem.
- 24. Prove that a nonzero polynomial $f(x) \in F[x]$ of degree n can have atmost n zeros in a field F. 25. Prove that √2 is not a rational number.

F if and only if it has a zero in F.

26. Let $f(x) \in F[x]$ and let f(x) be of degree 2 or 3. Prove that f(x) is reducible over

27. Let $\Phi: G \to G'$ be a group homomorphism. If H is a subgroup of G then prove that $\Phi[H]$ is a subgroup of G'.

(aH) (bH) = (ab)H, \forall a, b \in G. 29. Let R be a ring with additive identity 0. Then for a, $b \in R$, prove that

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2×6=12)

b) a(-b) = (-a)b = -(ab). c) (-a)(-b) = ab.

30. State and prove the division algorithm for F[x].

28. Let H be a subgroup of G. Prove that H is normal if and only if

a) 0a = a0 = 0.