Reg. No. : Name :

III Semester B.Sc. Honours in Mathematics Degree (CBCSS – Supplementary) Examination, November 2023 (2018 - 2020 Admissions) BHM 305 : ADVANCED LINEAR ALGEBRA

Time: 3 Hours

Max. Marks: 60

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

SECTION - A

1. Let V be the space of all $n \times n$ matrices over a field F and let B be a fixed $n \times n$ matrix. If T is a linear operator on V defined by T(A) = AB - BA, and if

- f is the trace function, what is $T^t f$? 2. Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x_1, x_2) = (x_1 + x_2, x_1 + x_2)$. Find characteristic
- 3. Let T be a linear operator on R^2 defined by $T(x_1, x_2) = (-x_2, x_1)$. Find the
- 4. Let (|) be the standard inner product on R². Let α = (1, 2), β = (-1, 1). If γ is a vector such that $(\alpha|\gamma) = -1$ and $(\beta|\gamma) = 3$, find γ . 5. Find a unitary matrix which is not orthogonal.
- SECTION B
- Answer any 6 questions out of 9 questions. Each question carries 2 marks.

the subspace spanned by S.

i) $(T + U)^* = T^* + U^*$

6. Let V be a finite dimensional vector space over the field F. For each vector α in V define $L_{\alpha}(f) = f(\alpha)$, $f \in V^*$. Prove that the mapping $\alpha \to L_{\alpha}$ is an isomorphism of V onto V**.

P.T.O.

K23U 3610

Let T be a linear operator on a finite dimensional space V. If T is diagonalizable and if c_1, \ldots, c_k are distinct characteristic values of T, prove that there exist

linear operators E_1, \ldots, E_k on V such that $T = c_1 E_1 + \ldots + c_k E_k$. 9. Let V be a real or complex vector space with an inner product. Show that $||\alpha+\beta||^2+||\alpha-\beta||^2=2||\alpha||^2+2||\beta||^2 \text{ for any } \alpha,\,\beta\in\,V.$

-2-

7. If S is any subset of a finite dimensional vector space V, prove that (S°)° is

- 10. Prove that an orthogonal set of nonzero vectors is linearly independent. Let V be a vector space and S be any nonempty subset of V. Prove that S[⊥] is a subspace of V.
- 12. Let V be a finite dimensional inner product space. If T and U are linear operators on V and c is a scalar, prove that :
- ii) $(cT)^* = \overline{c}T^*$ 13. Let T be a linear operator on C^2 defined by $T \in \{1 + i, 2\}$, $T \in \{2 = (i, i)\}$. Using
- 14. Let U be a linear operator on an inner product space V. Prove that U is unitary if and only if the adjoint U^* of U exists and $UU^* = U^*U = I$.
- SECTION C Answer any 8 questions out of 12 questions. Each question carries 4 marks.

the standard inner product, find the matrix of T* in the standard ordered basis.

15. Let g, f, ..., f be linear functionals on a vector space V with respective null spaces N_1, \ldots, N_r . Prove that g is a linear combination of f_1, \ldots, f_r if and only if N contains $N_1 \cap \ldots \cap N_r$.

16. Let V and W be finite dimensional vector spaces over the field F, and let T

be a linear transformation from V into W. Prove that : i) rank (T^I) = rank(T)

ii) the range of T^t is the annihilator of the null space of T.

-3-

17. Let T be a linear operator on R3 which is represented in the standard basis by

Let T be a linear operator on the space V, and let W₁,..., W_k and E₁,..., E_k

the matrix $A = \begin{bmatrix} -1 & 4 & 2 \end{bmatrix}$. Find a matrix P such that $P^{-1}AP$ is a diagonal

[5 -6 -6]

3 -6 -4

matrix.

be on V such that

i) $E_i^2 = E_i$ for each i;

ii) $E_i E_j = 0$ if $i \neq j$;

iii) $I = E_1 + \dots E_k$;

i = 1, ..., k

i) T = D + N

ii) DN = ND.

iv) the range of E, is W,.

K23U 3610

Let T be a linear operator on the finite dimensional vector space V over the field F. Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Prove that there is a diagonalizable operator

22. Let V be an inner product space, and let α , β be any vectors in V and c be

D on V and a nilpotent operator N on V such that

21. State and prove polarization identities.

any scalar. Then prove that

i) $||c\alpha|| = |c|||\alpha||$

ii) $||\alpha|| > 0$ for $\alpha \neq 0$

iii) $|(\alpha|\beta)| \le ||\alpha|| ||\beta||$.

20. Verify that standard inner product on Fⁿ is an inner product.

Prove that each subspace W is invariant under T if and only if TE = ET for

 Let W be a subspace of an inner product space V and β be a vector in V. Prove that the vector α in W is a best approximation in W if and only if $\beta - \alpha$ is orthogonal to every vector in W.

-4-

24. Let V be a finite dimensional inner product space and T be a linear operator on

25. Let V be a finite dimensional inner product space. Prove that an idempotent

26. Prove that T is normal if and only if $T = T_1 + iT_2$ where T_1 and T_2 are self

SECTION - D

V. If T is invertible, show that T* is invertible and $(T^*)^{-1} = (T^{-1})^*$.

operator E on V is self adjoint if and only if EE* = E*E.

adjoint operators which commute.

K23U 3610

elements of F.

Answer any 2 questions out of 4 questions. Each question carries 6 marks. 27. Suppose V is a finite dimensional vector space over the field F. Prove that a linear operator T on V is diagonalizable if and only if the minimal polynomial

for T has the form $p = (x - c_1) \dots (x - c_k)$, where c_1, \dots, c_k are distinct

29. State Gram-Schmidt orthogonalization process and using this process to the

- vectors $\beta_1 = (3, 0, 4)$, $\beta_2 = (-1, 0, 7)$, $\beta_3 = (2, 9, 11)$ to obtain an orthonormal basis for R3 with standard inner product. 30. Let V be a complex inner product space and T be a self adjoint linear operator on V show that i) $||\alpha + iT\alpha|| = ||\alpha - iT\alpha||$ for every α in V.
 - ii) $\alpha + iT\alpha = \beta + iT\beta$ if and only if $\alpha = \beta$. iii) I + iT is nonsingular.

28. State and prove primary decomposition theorem.