Reg. No. :

III Semester B.Sc. Honours in Mathematics Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/Improvement) Examination, November 2023 (2021 and 2022 Admissions)

3B09 BMH : REAL ANALYSIS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions. Each question carries 1 mark.

- 1. State Well Ordering Property of N.
- 2. Let $S = \{1 (-1)^n/n : n \in \mathbb{N}\}$. Find inf S and sup S.
- 3. Define ϵ neighbourhood of a point in \mathbb{R} .
- 4. Find $\lim \left(\frac{1}{n}\right)$.
- 5. If the series $\sum x_n$ converges, prove that $\lim(x_n) = 0$.

(4×1=4

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks.

- Prove that the set Z of all integers is denumerable.
- 7. Using Principle of Mathematical Induction, prove that for each $n \in \mathbb{N}$, the sum of first n natural numbers is $\frac{1}{2}n(n+1)$.
- State and prove Triangle inequality of real numbers.
- 9. Solve the inequality $|2x-1| \le x+1$, for $x \in \mathbb{R}$.
- 10. Prove that a sequence in $\mathbb R$ can have atmost one limit.

P.T.O.

11 Drove

K23U 3601

-2-

- 11. Prove that a Cauchy sequence of real numbers is bounded.
- 12. Find lim (sin n)
 13. State and prove Root test.
- 14. Does the series $\sum_{n=1}^{\infty} \frac{1}{n^2 n + 1}$ converges ?
- SECTION C

MITTER SOLD

 $(6 \times 2 = 12)$

Answer any 8 questions out of 12 questions. Each question carries 4 marks.

15. Prove that the set $\mathbb{N} \times \mathbb{N}$ is denumerable.

- 16. State and prove Cantor's theorem.
- 17. State and prove Archimedean property of real numbers.
- 18. Let S be a nonempty subset of $\mathbb R$ and $a \in \mathbb R$. Define the set $a + S = \{a + s : s \in S\}$. Prove that $\sup(a + S) = a + \sup S$.
- 19. State and prove Density theorem.
 20. Let I_n = [a_n, b_n], n∈ N is a nested sequence of closed bounded intervals such
- that the lengths $b_n a_n$ of I_n satisfy $\inf\{b_n a_n : n \in \mathbb{N}\} = 0$. Prove that the number ξ contained in I_n for all $n \in \mathbb{N}$ is unique.

the sequence X converges to x.

21. Let $Y = (y_n)$ be defined inductively by $y_1 = 1$, $y_{n+1} = \frac{1}{4}(2y_n + 3)$, $n \in \mathbb{N}$. Find $\lim Y$.

22. Let $X = (x_n)$ be a bounded sequence of real numbers and let $x \in \mathbb{R}$ have the

property that every convergent subsequence of X converges to x. Prove that

- 23. Let X = (x_n) and Y = (y_n) be sequences of real numbers that converge to x and y respectively. Prove that the sequence X + Y, XY converge to x + y and xy respectively.
 24. State and prove Abel's test.
- 0.14

26. Does the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges ?

(8×4=32)

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks.

25. Prove that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges when p > 1.

- 27. Suppose that S and T are sets and that T ⊆ S. If S is a finite set, then prove that T is a finite set.
 28. Prove that the set R of real numbers is not countable.
- Prove that the set ℝ of real numbers is not countar.
 State and prove monotone subsequence theorem.
- 30. State and prove Raabe's test.

 $(2 \times 6 = 12)$