Reg. No.:....

Name : .....

#### Il Semester B.Sc. Hon's (Mathematics) Degree (Supplementary) Examination, April 2023 (2017-2020 Admission)

BHM 203 : Integral Calculus

Time: 3 Hours

Max. Marks: 60

### SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

 $(4 \times 1 = 4)$ 

- 1. Find a formula for the nth term of the sequence 1, 5, 9, 13,17, ...
- 2. Given  $a_n = \frac{1-n}{n^2}$ . Find  $a_1$ ,  $a_2$ ,  $a_3$ ,  $a_4$ .
- 3. Find the sum of the geometric series  $\sum_{n=1}^{\infty} \frac{1}{9} \left(\frac{1}{3}\right)^{n-1}$ .
- 4. Give the formula for the work done by a force F(x) along the x axis from x = a to x = b.
- SECTION B

State the mean value theorem for definite integrals.

#### Answer any 6 questions out of 9 questions. Each question carries 2 marks.

6. Find a power series representation of  $f(x) = \ln(1 + x)$ ,  $-1 < x \le 1$ .

 $(6 \times 2 = 12)$ 

- Find the Taylor series and Taylor polynomials generated by  $f(x) = e^x$  at x = 0.
- 8. Express the solution of the initial value problem  $\frac{dy}{dx} = \sec x$ , y (2) = 3.
- 9. Express the limit  $\lim_{\|\mathbf{p}\|\to 0} \sum_{k=1}^{n} (c_k^2 3c_k) \Delta x_k$ , where P is a partition of [-7, 5].
- 10. Evaluate  $\int_{\underline{z}}^{\underline{z}} \cot \theta \csc^2 \theta \ d\theta$ .

P.T.O.

# 11. Find the area between $y = \sec^2 x$ and $y = \tan^2 x$ , $x = -\frac{\pi}{4}$ , $x = \frac{\pi}{4}$ .

K23U 2018

-2-



 $(8 \times 4 = 32)$ 

- 12. The region between the curve  $y = \sqrt{x}, 0 \le x \le 4$  and the x axis is
- revolved about the x axis to generate a solid. Find the volume. Using reduction formula, evaluate ∫sin² x dx.
- Using reduction formula, evaluate ∫tan<sup>6</sup> x dx.
- SECTION C

## Answer any 8 questions out of 12 questions. Each question carries 4 marks.

Find the Maclaurin series for cos x. 16. Find the sum of  $\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$ 

- 17. Find the Taylor series expansion at x = 0, of  $e^x \cos x$ .
- 18. Find the length of the curve  $y = \frac{4\sqrt{2}}{3}x^{\frac{3}{2}} 1$ ,  $0 \le x \le 1$ .
- 19. The line segment x = 1 y,  $0 \le y \le 1$ , is revolved about the y axis to generate a cone. Find its lateral surface area.
- 20. Find the center of mass of a wire of constant density  $\delta$  shaped like a semicircle of radius a.
- 21. A spring has a natural length of 1 m. A force of 24 N stretches the spring to a length of 1.8 m. a) Find the force constant k.
- b) How far will a 45 N force stretch the spring ? 22. Evaluate  $\int_0^1 \sqrt{t^5 + 2t} (5t^4 + 2) dt$  and  $\int_{\frac{\pi}{2}}^{\frac{\pi}{3}} (1 - \cos 3t) \sin 3t dt$ .
- 23. Show that  $\frac{(-1)^{n+1}(n-1)}{n}$  diverges.
- 24. State the nth term test for divergence and hence test the divergence of the series  $\sum_{n=1}^{\infty} n^2$ .

26. Show that if f is continuous on [a, b],  $a \neq b$ , and if  $\int_a^b f(x) dx = 0$  then f(x) = 0

K23U 2018

 $(2 \times 6 = 12)$ 

evaluate ∫ cos x dx.

atleast once in [a, b].

cardioid  $r = 1 - \cos \theta$ .

Answer any 2 questions out of 4 questions. Each carry 6 marks. 27. Find the area of the region that lies inside the circle r = 1 and outside the

the lemniscate  $r^2 = \cos 2\theta$  about the y – axis.

25. State second part of the Fundamental Theorem of Calculus and

Give the reduction formula for  $\int_0^{\frac{\pi}{2}} \cos^n x \, dx$  and evaluate  $\int_0^{\infty} \frac{1}{(1+x^2)^n} \, dx$ . 30. a) Show that the value of  $\int_0^1 \sqrt{1 + \cos x} \, dx$  cannot possibly be 2.

b) Use the inequality  $\cos x \ge \left(1 - \frac{x^2}{2}\right)$ , which holds for all x, to find a lower

28. Find the area of the surface generated by revolving the right hand loop of

-3-

SECTION - D

bound for the value of foosxdx.