Reg. No. :

I Semester B.Sc. Honours in Mathematics (CBCSS - OBE - Regular/ Supplementary/Improvement) Examination, November 2023 (2021 to 2023 Admissions) **CORE COURSE**

1B01 BMH : Calculus - I

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions from the following. Each question carries 1 mark.

- 1. Define the exponential function.
- 2. Is the function $f(x) = x^3$ is one-one. Justify your answer.
- 3. Show that sinh(-x) = -sinh(x).
- 4. If it is known that $\int f(x)dx = 17$ and $\int f(x)dx = 12$, find $\int f(x)dx$. Find ∫xe^xdx.

Answer any six questions. Each question carries 2 marks.

SECTION - B

6. Find sec xdx. 7. Find the moments of the systems of objects that have masses 4, 2 and 4 at the

- points (2, -3), (-3, 1) and (3, 5).

P.T.O.

K23U 4123

8. Find the volume of the solid obtained by rotating about the y-axis the region

- between y = x and $y = x^2$. 9. Find the average value of the function $f(x) = 1 + x^2$ on the interval [-1, 2].
- 10. Evaluate $\lim_{x\to 0} \frac{\sin 2x}{\sin 3x}$.
- State the Mean Value Theorem.
- 12. Find the critical numbers of the function $f(x) = x^2(1 x)$.
- 13. If f and g are continuous at a, then show that fg is also continuous at a.
- 14. Find the inverse of the function $f(x) = x^3 + 2$.
- Answer any eight questions. Each question carries 4 marks.

SECTION - C

a) How many bacteria there after 3 hours ? b) How many bacteria there after t hours? c) How many bacteria there after 40 minutes?

- 16. a) Find the domain of the function $f(x) = \ln(e^x 3)$.
- 17. Using $\varepsilon \delta$ definition to show that $\lim_{x \to -1} x^2 = 1$. 18. Find the linearization of the function $f(x) = \sqrt{x+3}$ at 1 and use it to approximate

the numbers $\sqrt{3.98}$ and $\sqrt{4.05}$.

conclusion of the mean value theorem.

b) Show that $\cos(\tan^{-1} x) = \frac{1}{1 + x^2}$.

19. Show that $\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right), x \ge 1$. 20. Verify that the function $f(x) = x^3 - 3x + 2$, satisfies the hypothesis of the Mean Value Theorem on the interval [-2, 2]. Then find all numbers that satisfy the

a) Find the displacement of the particle during the time period $1 \le t \le 4$. b) Find the distance travelled during this time period.

K23U 4123

25. A dam has the shape of a trapezoid shown in the following figure. The height is 20 m and the width is 50 m at the top and 30 m at the bottom. Find the force

21. Find the area enclosed between the parabolas $y^2 = x$ and $x^2 = y$.

23. A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ m/s.

on the dam due to pressure if the water level is 4 m from the top of the dam.

SECTION - D

22. Show that the volume of a sphere of radius r is $V = \frac{4}{2}\pi r^3$.

26. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^7 x \cos^5 x dx$

24. Evaluate $\int_{-\infty}^{\infty} \frac{dx}{x-1}$ if possible.

27. Define the centroid of a region and find the centroid of the region bounded by the line y = x and the parobola $y = x^2$.

Answer any two questions. Each question carries 6 marks.

- 28. a) A force of 40 N is required to hold a spring that has been stretched from its natural length 10 cm to 15 cm. How much work is done in stretching the spring from 15 cm to 18 cm?
- b) Find $\frac{d}{dx} \int_{1}^{x} \sec t dt$.
- 29. Discuss the curve $f(x) = \frac{\cos x}{2 + \sin x}$ with respect to local maxima and minima, points of inflexion and concavity.
- 30. Find the vertical asymptotes and horizontal asymptotes of the curve $y = \frac{2x^2 + x - 1}{x^2 + x - 2}$