Reg. No.: Name :

I Semester B.Sc. Honours in Mathematics (C.B.C.S.S. - OBE -Regular/Supplementary/Improvement) Examination, November 2023 (2021 to 2023 Admissions) Core Course

1B02 BMH: FOUNDATIONS OF MATHEMATICS

Time: 3 Hours

Max. Marks: 60

Answer any four questions from this Part. Each question carries 1 mark. (4×1=4) Define an embedding of X in Y.

- 2. Show that $f(x) = x^2$ is decreasing in $(-\infty, 0]$.
- 3. What do you mean by the base case in mathematical induction?
- Define the length of a vector.
- Answer any six questions from this Part. Each question carries 2 marks. (6x2=12) 6. Let $f: Z \to Z$ and $g: N \to Z$ defined by $f(x) = g(x) = x^2$. Is f = g? Justify.

5. When can you say that a system of linear equations is said to be consistent?

7. Show that the circle $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is not graph of any function.

9. Differentiate the Induction Principle and the Strong Induction Principle.

8. Check whether the function $f(x) = x^2$ defined on R is one-one or not.

- 10. Define the greatest common divisor of two integers. Explain with an example.

-2-

P.T.O.

11. Calculate a^Tb and ab^T for $a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $b = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}$.

K23U 4124

12. Prove that if $\langle n, v \rangle = 0$ and $\langle n, w \rangle = 0$ then $\langle n, sv + tw \rangle = 0$, for any $s, t \in R$. 13. State the elementary row operations of a matrix.

- 14. Show that the linear system x + y + z = 6, x + y + z = 1 is inconsistent.
- PART C
- Answer any 8 questions from this Part. Each question carries 4 marks. 15. Define max{f, g} and min{f, g}. Plot the graph of max{f, g} and min{f, g}, where

 $f(x) = \sin x$; $g(x) = \cos x$ defined on $[-2\pi, 2\pi]$. 16. Show that the function $f:[0,\pi)\to R$ given by $f(x)=\cos x$ is one-one.

 $(8 \times 4 = 32)$

- 17. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then prove that, a) If f and g are injective (one-one), then g o f is injective b) If f and g are surjective (onto), then g o f is surjective.
- 18. For any positive integer n, we show that $1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Prove that for each $n \in \mathbb{N}$, $a_n = 3 \cdot 2^{n-1} + 2(-1)^n$.

 $\langle a, b \rangle = ||a|| ||b|| \cos \theta.$

20. Prove that every amount of postage that is at least 12 rupees can be made from 4-rupee and 5-rupee stamps. 21. Let $a, b \in \mathbb{R}^2$ and let θ denote the angle between them. Then show that

19. For $n \in N$ define an as follows: $a_1 = 1$, $a_2 = 8$ and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$.

Find values of c and d such that the points A, B and C = (c, d, -5) are collinear. 24. Using Gauss elimination method, solve,

 $A \subseteq X$.

K23U 4124

 $x_1 + x_2 + x_3 = 3$ $2x_1 + x_2 + x_3 = 4$ $x_1 - x_2 + 2x_3 = 5$.

PART - D

27. Prove that a function $f: X \to Y$ is one-one if and only if $A = f^{-1}(f(A))$ for each

28. Let a, b be integers, not both zero, and d be the greatest common divisor of a and b. Then prove that there exist integers x, y such that d = ax + by.

Answer any 2 questions from this Part. Each question carries 6 marks.

23. Find a vector equation of the line through the points A = (4, 5, 1) and B = (1, 3, -2).

25. If A is an m \times n matrix with m < n then prove that Ax = 0 has infinitely many solutions. 26. Let $E = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Write down E^{-1} . Then show that $EE^{-1} = I$ and $E^{-1} = I$.

22. Prove that the equations $x = \begin{vmatrix} 3 \end{vmatrix} + t \begin{vmatrix} 2 \end{vmatrix}$ and

 $x = \begin{pmatrix} 3 \\ 7 \\ + t \end{pmatrix} + t \begin{pmatrix} -3 \\ -6 \\ \end{bmatrix}$ s, $t \in R$ describe the same line.

29. Find a Cartesian equation of the plane given by

 $(2 \times 6 = 12)$

K23U 4124

 $x = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, s, t \in R. Show that the equation$

30. Solve the following system of equations Ax = b by reducing the augmented

-4-

matrix to reduced row echelon form :
$$x_1-x_2+x_3+x_4+2x_5=4\\ -x_1+x_2+x_4-x_5=-3\\ x_1-x_2+2x_3+3x_4+4x_5=7.$$
 Show that your solution can be written in the form $x=p+sv_1+tv_2$ where $Ap=b,\ Av_1=0$ and $Av_2=0$.

 $x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 6 \\ 2 \\ -5 \end{pmatrix} + t \begin{pmatrix} 2 \\ -2 \\ -7 \end{pmatrix}, \text{ s, } t \in R \text{ represents the same plane.}$