Reg. No. :

Name :

VI Semester B.Sc. Honours in Mathematics Degree (CBCSS-Regular/ Supplementary/Improvement – 2016 Syllabus) Examination, April 2022 BHM 601 : MATHEMATICAL TRANSFORMS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark. (4×1=4)

- 1. Let $f(t) = e^t$ when $t \ge 0$, a is a constant. Find $\mathcal{L}(f)$.
- 2. State the convolution theorem for Laplace transforms.
- 3. Define Fourier sine transform of an odd function f(x).
- 4. Define Z-transform of a sequence {f(n)} as the function F(z) of a complex variable z.
- 5. Find Z⁻¹ {e^{1/2}}.

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks. (6x2=12)

- 6. Find the Laplace transform of cosh at.
- 7. Let H(s) = 1/[(s a)s]. Find inverse transform h(t).
- 8. Find the Fourier sine transform of the function

$$f(x) = \begin{cases} k, & \text{if } 0 \le x \le \\ 0, & \text{if } x > a \end{cases}$$

- 9. Find the first order of Hankel transform of $f(r) = e^{-ar}$.
- 10. Let $f(n) = a^n$, $n \ge 0$. Find $Z\{a^n\}$.
- 11. Find the inverse Z-transform of $F(z) = z/(z^2 6z + 8)$.

P.T.O.

K22U 0213

-2-

- 12. Find the Fourier cosine transform of e-x.
- 13. Find the Mellin transform of the function $f(x) = e^{-nx}$, where $n \ge 0$.
- 14. Show that $\tilde{f}(k) = \mathcal{H}\left\{\frac{e^{-ar}}{r}\right\} = (1/k)[1-a(k^2+a^2)^{-1/2}]$.

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks. (8×4=32)

- 15. Solve the initial value problem $y' + (1/2)y = 17 \sin(2t)$, y(0) = -1, using the Laplace transform.
- 16. Find the inverse transform of F(s) = $\frac{e^{-s}}{s^2 + \pi^2} + \frac{e^{-2s}}{s^2 + \pi^2} + \frac{e^{-3s}}{(s+2)^2}$.
- 17. a) Write the properties of convolution.
 - b) Let H(s) = 1/[(s a)s]. Find h(t).
- 18. Represent f(x) as a Fourier cosine integral, $f(x) = \begin{cases} 1, & \text{if } 0 < x < a \\ 0, & \text{if } x > 1 \end{cases}$
- 19. State and prove linearity property of Fourier transform.
- 20. If $f(x) = (e^x 1)^{-1}$. Find $\mu\{1/(e^x 1)\}$.
- 21. Find the first order Hankel transform of
 - a) $f(r) = \sin ar/r$
 - b) $f(r) = r.e^{(-ar^2)}$.
- 22. If $\mathcal{H}_n\{f(r)\}=\tilde{f}_n(k)$, then show that $\mathcal{H}_n\{f(ar)\}=\frac{1}{a^2}\tilde{f}_n\bigg(\frac{k}{a}\bigg),\ a>0$.
- 23. Show that, $\mu\left\{\frac{1}{(1+x)^n}\right\} = \frac{\Gamma(p)\Gamma(n-p)}{\Gamma(n)}$.
- 24. Show that $Z\{n^2\} = z(z+1)/(z-1)^3$.
- 25. Find the inverse Z-transform of $F(z) = \frac{3z^2 z}{(z-1)(z-2)^2}$.
- 26. Find the sum of the series $\sum_{n=0}^{\infty} a^n \sin nx$.

-3-

K22U 0213

SECTION - D

Answer any 2 questions out of 4 questions. Each question carries 6 marks. (2x6=12)

- 27. a) Find the Laplace transform of sinh at.
 - b) Let f(x) be continuous on the x-axis and $f(x) \to 0$ as $|x| \to \infty$. Furthermore, let f'(x) be absolutely integrable on the x-axis. Then show that $\mathscr{L}(f'(x)) = i\omega \mathscr{L}\{f(x)\}.$
- 28. State and prove second shifting theorem for Laplace transforms.
- 29. State and prove the final value theorem for Z-transforms.
- 30. a) Use the convolution theorem to show that $Z^{-1}\left\{\frac{z(z+1)}{(z-1)^3}\right\} = n^2$.
 - b) Solve the initial value problem for the difference equation f(n + 1) f(n) = 1, f(0) = 0.