SECTION - A

(Answer any 4 questions out of 5 questions. Each question carries 1 mark.) (4×1=4)

- 1. Write the discrete topology on a set $S = \{1, 2, 3\}$.
- 2. Define the usual topology on the set of real numbers.
- Give an example for a set which is both open and closed in a topological space.
- 4. Define embedding of a topological space into another.
- 5. Define normal space and write an example for such a space.

SECTION - B

(Answer any 6 questions out of 9 questions. Each question carries 2 marks.) (6×2=12)

- Prove that the semi-open interval topology is stronger than the usual topology on the set of real numbers.
- Prove that the product topology is the weak topology determined by the projection function.
- 8. If A and B are any subset of a topological space X, prove that $A \cup B = A \cup B$.
- 9. Let $Z \subset Y \subset X$, and be a topology on X. Then prove that $(\tau/Y)/Z = \tau/Z$.
- 10. Prove that every T₂ space is T₄.

P.T.O.

K22U 0214

- 11. Suppose y is an accumulation point of a subset A of a T₁ space X. Then prove that every neighborhood of y contains infinitely many points of A.
- 12. Prove that regularity is a hereditary property.
- 13. Prove that every compact Hausdorff space is a T₃ space.
- 14. Prove that every regular, second countable space is normal.

SECTION - C

(Answer any 8 questions out of 12 questions. Each question carries 4 marks.) (8×4=32)

- 15. If a space is second countable then prove every open cover of it has a countable subcover.
- Prove that metrisability is a hereditary property.
- 17. Prove that for a subset A of a space X, $\overline{A} = A \cup A'$.
- 18. Prove that the interior of a set is the same as the complement of the closure of the complement of the set.
- 19. Let (X, τ) be a topological space and $A \subset X$. Then prove that A is a compact subset of X if and only if the subspace (A : J/A) is compact.
- Prove that every continuous real-valued function on a compact space is bounded and attains its extrema.
- 21. Prove that every separable space satisfy the countable chain condition.
- 22. Prove that all metric spaces are T₄.
- 23. Prove that every completely regular space is regular and also prove every Tychnoff space is T_a.
- 24. Prove that every regular, Lindeloff space is normal.
- 25. Prove that second countable space is also first countable.

K22U 0214

SECTION - D

(Answer any 2 questions out of 4 questions. Each question carries 6 marks.) (2×6=12)

- 27. Prove that closed subset of a compact space is compact.
- 28. Prove that every closed and bounded interval is compact.
- 29. Prove that:
 - a) Components are closed sets.
 - b) Any two distinct components are mutually disjoint.
 - c) Every nonempty connected subset is contained in a unique component.
 - d) Every space is the disjoint union of its components.
- 30. Let X, Y be spaces, $x \in X$ and $f: X \to Y$ a function. Suppose X is first countable at x. Then prove that f is continuous at x if and only if for every sequence $\{x_n\}$ which converges to $x \in X$, the sequence $\{f(x_n)\}$ converges to f(x) in Y.