Reg. No. :

Name :

IV Semester B:Sc. Hon's (Mathematics) Degree CBCSS – Regular/ Supplementary/Improvement Examination, April 2022 (2016 Admission Onwards) BHM 405 : NUMERICAL ANALYSIS

Time: 3 Hours

Max. Marks: 60

SECTION - A

(Answer any 4 questions out of 5 questions. Each question carries 1 mark.) (4x1=4)

- 1. Define a shift operator.
- 2. What is Simpson's $\frac{1}{3}$ rule of numerical integration?
- 3. Write Newton's forward interpolation formula.
- 4. If $u_0 = 1$, $u_1 = 5$, $u_2 = 8$, $u_3 = 3$, $u_4 = 7$, $u_5 = 0$, then find $\Delta^5 u_0$.
- 5. What is the condition for convergence while solving $x = \phi(x)$ by iteration method?

SECTION - B

(Answer any 6 questions out of 9 questions. Each question carries 2 marks.) (6x2=12)

- 6. Prove that $\mu^2 = 1 + \frac{1}{4}\delta^2$, where μ is the mean operator and δ is the central difference operator.
- 7. Prove that $\Delta^3 y_2 = \Delta^3 y_5$.
- 8. Determine the real root of $xe^x = 1$ by iteration method.
- 9. Show that $E = e^{hD}$, where E is the shift operator and D is the differential operator.
- 10. Form the divided difference table using the following data.

X	-1	0	3	6	7
У	3	-6	39	822	1611

P.T.O.

K22U 1785

- 11. Show that the divided differences are symmetric.
- 12. Find the missing term in the table.

x	0	1	2	3	4
---	---	---	---	---	---

- 13. Determine the maximum error in evaluating the integral $I = \int_{0}^{\frac{\pi}{2}} \sin x \, dx$.
- 14. Using Simpson's $\frac{1}{3}$ rule with h = 1, evaluate the integral $I = \int_{1}^{7} x^{2} \log x \, dx$.

SECTION - C

(Answer any 8 questions out of 12 questions. Each question carries 4 marks.) (8×4=32)

- 15. Find a real root of $x^3 = 1 x^2$ on the interval [0, 1] with an accuracy of 10^{-4} by iteration method.
- 16. Find a real root of $x \sin x + \cos x = 0$ by Newton Raphson method.
- 17. Find a real root of $x^3 2x 5 = 0$ by bisection method.
- 18. Find Lagrange's interpolation formula using the following data.

x	0	1	3	4
У	-12	0	12	24

- 19. If y(1) = 4, y(3) = 12, y(4) = 19 and y(x) = 7, find x.
- 20. From the following data, find $\frac{dy}{dx}$ at x = 3 and $\frac{d^2y}{dx^2}$ at x = 3.

4			ax	ax			-1.530/
Х	0	1	2	3	4	5	6
V	6 9897	7 4036	7 7815	8.1291	8.4510	8.7506	9.0309

- 21. Show that $\Delta^n u_{x-n} = u_x nu_{x-1} + \frac{n(n-1)}{2}u_{x-2} + ... + (-1)^n u_{x-n}$.
- 22. Calculate f(7.5) from the table :

X	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

-3-

K22U 1785

- 23. Using Newton's divided difference formula find y when x = 2, where the tabulated points are given by (1, -3), (3, 9), (4, 30) and (6, 132).
- 24. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule with h = 0.2, hence find the value of π .
- 25. Evaluate $\int_{0}^{\frac{\pi}{2}} e^{\sin x} dx$ correct to 4 decimals by Simpson's $\frac{3}{8}$ rule.
- 26. A rod is rotating in a plane. The angle θ (in radians) at different times t (in seconds) are given below.

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.15	0.50	1.15	2.0	3.20	4.666

Find its angular velocity and angular acceleration when t = 0.6 seconds.

SECTION - D

(Answer any 2 questions out of 4 questions. Each question carries 6 marks.) (2×6=12)

- 27. Find the smallest root of $xe^x = 1$ by Ramanujan's method.
- 28. Find the missing term:

х	0	5	10	15	20	30
V	1	3		73	225	1153

- 29. Evaluate $\int_{1+x}^{1} dx$ correct to 3 decimal places :
 - a) Using Trapezoidal rule taking h = 0.5
 - b) Using Simpson's $\frac{1}{3}$ rule taking h = 0.25.
- 30. Find the value of e^{1.17} using Gauss forward formula, from the following data:

х	1	1.05	1.1	1.15	1.2	1.25	1.3
v	2.7183	2.8577	3.0042	3.1582	3.3201	3.4903	3.6693