DESCRIPTION OF THE PERSON OF T	200	THE REAL PROPERTY.	DOM:	DOMESTIC:	DESCRIPTION	minns.	SERVICE STREET	Mitte	1831
	813	HEIR	ш	1000	HHE	B1011	6 4 6 86	#HI	1881
18312111	464	HERE	1188	000	HITTE	E1561	(# # B)	miii.	1891

K22U 3675

Name :

Third Semester B.Sc. Honours in Mathematics Degree (CBCSS – Regular) Examination, November 2022 (2021 Admission)

3B13BMH: NUMERICAL ANALYSIS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any four questions from the following. Each question carries 1 mark.

- 1. Does the equation $f(x) = 3\sin x x$ has a real root? Justify your answer.
- 2. Show that $\nabla = 1 E^{-1}$.
- 3. Show that the first difference of a polynomial of degree n is a polynomial of degree n-1.
- 4. Write Lagrange's polynomial of degree one passing through the points (x_o, y_o), $(x_1, y_1).$
- 5. Write the formula of Simpson's 3/8 rule for integration.

SECTION - B

Answer any six questions. Each question carries 2 marks.

- Write a short note on Newton-Raphson Method.
- 7. Show that the equation $f(x) = x^3 x 1$ has a real root lies between 1 and 2.
- 8. By the regula falsi method, find the first approximation to the root of $f(x) = x^3 - 2x - 5 = 0.$
- 9. Show that $\mu = \frac{1}{2} \left(E^{1/2} + E^{-1/2} \right)$

P.T.O.

K22U 3675

- 10. With the usual notations, show that the second differences of the polynomial f(x) is f(x + 2h) - 2f(x + h) + f(x).
- 11. If $y_1 = 4$, $y_2 = 12$, $y_4 = 19$ and $y_x = 7$, find x.
- 12. Write Newton's Forward and Backward Interpolation formulas.
- 13. With the usual notations show that $[x_0, x_1] = [x_1, x_2]$.
- 14. Use Trapezoidal Rule to evaluate $\int (1+x)^{-1} dx$ with h = 0.25.

SECTION - C

Answer any eight questions. Each question carries 4 marks.

- 15. Solve $x = 1/2 + \sin x$ by iteration method by taking $x_0 = 1$.
- 16. Use the Newton-Raphson method to find a root of the equation $x^3 2x 5 = 0$.
- 17. Explain briefly on Ramanujan's method to determine the smallest root of the equation f(x) = 0.
- 18. With the usual notations prove that $(1 + \Delta)(1 \nabla) = 1$.
- 19. Prove that $u_1 + u_2 + ... + u_n = nC_1u_n + nC_2\Delta u_n + + \Delta^{n-1}u_n$.
- 20. Evaluate $\Delta(x(x + 1) (x + 2) (x + 3))$ where the interval of differencing being unity.
- 21. Find the missing term in the following table:
 - х у 0 1
 - 2 9
 - 3 -
 - 4 81

Explain why the result differs from $3^3 = 27$.

- 22. Using Gauss's forward formula, find the value of f(32) given that f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794.
- 23. Derive Newton's forward interpolation formula.

K22U 3675

- 24. Apply Simpson's one-third rule to evaluate $\int_{0}^{10} \frac{1}{1+x} dx$ taking h = 1.
- 25. Show that the Newton-Raphson process has a second order convergence.
- 26. State any four advantages of Simpson's 3/8 rule than that of 1/3 rule.

SECTION - D

Answer any two questions. Each question carries 6 marks.

- 27. Using Bisection method, find a positive root the equation xex =1 which lies between 0 and 1 correct to three decimal places.
- 28. Form a table of differences for the function $f(x) = x^3 + 5x 7$ for x = -1, 0, 1, 2, 3, 4, 5. Continue the table to obtain f(6).
- 29. Find the cubic polynomial which takes the following values : y(1) = 24, y(3) = 120, y(5) = 336, y(7) = 720. Hence obtain the value of y(8).
- 30. From the following table of values of x and y obtain $\frac{d^2y}{dx^2}$ at x = 3.

2.94 0.1826

2.96 0.1811

2.98 0.1797

3.00 0.1783

3.02 0.1769 3.04 0.1755

3.06 0.1742