Reg.	No.	:	
Jame	P. P. C. C.		

Third Semester B.Sc. Honours in Mathematics Degree
(CBCSS – Supplementary/Improvement) Examination, November 2022
(2017-2020 Admissions)
BHM 302 : VECTOR CALCULUS

Time: 3 Hours

Max. Marks: 60

Answer any 4 out of 5 questions. Each question carries 1 mark:

- 1. Define limit of a vector function.
- 2. Define length of a smooth curve.
- 3. State Fubini's theorem.
- 4. State Fundamental theorem of line integrals.
- 5. Define Stoke's theorem.

Answer any 6 questions out of 9 questions. Each question carries 2 marks :

- 6. If $\vec{r}(t) = \cos ti + \sin tj + tk$, then find $\lim_{t\to a} \vec{r}(t)$.
- 7. Find the velocity and acceleration of a particle whose motion in space is given by the position vector $\vec{r}(t) = 2 \cos t i + 2 \sin t j + 5 \cos^2 t k$.
- 8. A straight line is parametrized by $\vec{r}(t) = \vec{C} + t\vec{v}$ for constant vector \vec{C} and \vec{v} . Find its curvature.
- 9. Calculate $\iint f(x,y) dA$ for $f(x,y) = 100 6x^2y$ and $R: 0 \le x \le 2, -1 \le y \le 1$.
- 10. Find the volume of the region bounded above by the elliptical paraboloid $z = 10 + x^2 + 3y^2$ and below by the rectangle $R: 0 \le x \le 1, \ 0 \le y \le 2$.
- 11. Evaluate $\iint_R e^{(x^2+y^2)} dy dx$ where R is the semicircular region bounded by the x-axis and the curve $y = \sqrt{1-x^2}$.

P.T.O.

K22U 3677

- 12. Show that $\vec{F} = (2x-3)i zj + \cos zk$ is not conservative.
- 13. Find the workdone by the conservative field $F = \nabla f$ where f = xyz along any smooth curve C joining the point A (-1, 3, 9) to B (1, 6, -4).
- 14. Prove that (curlgrad) f = 0.

Answer any 8 questions out of 12 questions. Each question carries 4 marks :

- 15. Find the arclength parametrization of a helix $\vec{r}(t) = \cos t i + \sin t j + t k$ from t_0 to t.
- 16. Find the derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of $\vec{v} = 3i 4j$.
- 17. Find the principal unit normal vector N for the helix $\vec{r}(t) = a \cos t i + a \sin t j + btk$, $a, b \ge 0$, $a^2 + b^2 \ne 0$ and describe how the vector is pointing.
- 18. Find the tangent plane and normal line of the surface $f(x, y, z) = x^2 + y^2 + z 9 = 0$ at the point $P_0(1, 2, 4)$.
- 19. Find the volume of the solid region bounded above by the paraboloid $z = 9 x^2 y^2$ and below by the unit circle in the xy-plane.
- 20. Find the average value of F(x, y, z) = xyz throughout the cubical region D bounded by the coordinate planes and the planes x = 2, y = 2, z = 2 in the first octant.
- 21. Find the centroid ($\delta = 1$) of the solid enclosed by the cylinder $x^2 + y^2 = 4$ bounded above by the paraboloid $z = x^2 + y^2$ and below by the xy-plane.
- 22. Integrate $f(x, y, z) = x 3y^2 + z$ over the line segment C joining the origin to the point (1, 1, 1).
- 23. Evaluate $\int_C \vec{F} \cdot \vec{dr}$ where $\vec{F}(x,y,z) = zi + xyj y^2k$ along the curve C given by $\vec{r}(t) = t^2i + tj + \sqrt{t}k$, $0 \le t \le 1$.
- 24. A fluid's velocity field is $\vec{F} = xi + zj + yk$. Find the flow along the helix $\vec{r}\left(t\right) = \cos ti + \sin tj + tk, \ 0 \le t \le \frac{\pi}{2}$

K22U 3677

- 25. Find the surface area of the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$.
- 26. Verify Divergence theorem for the vector field $\vec{F} = xi + yj + zk$ over the sphere $x^2 + y^2 + z^2 = a^2$.

Answer any 2 questions out of 4 questions. Each question carries 6 marks :

- Find the principal unit normal vector N and unit tangent vector T for the circular motion r(t) = cos 2ti + sin 2tj.
- 28. Integrate F (x, y, z) = 1 over the tetrahedron D with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0) and (0, 1, 1) in the order dzdydx.
- 29. Show that $\vec{F} = (e^x \cos y + yz)i + (xz e^x \sin y)j + (xy + z)k$ is conservative over its natural domain and find a potential function for it.
- 30. Find the surface area of a sphere of radius a.