00

K22U 1319

Reg. No. :

II Semester B.Sc. Hon's (Mathematics) Degree (C.B.C.S.S. – Supplementary/Improvement) Examination, April 2022 (2016-2020 Admissions)

BHM 204 : THEORY OF NUMBERS AND EQUATIONS

Time: 3 Hours

Max. Marks: 60

SECTION - A

Answer any 4 questions out of 5 questions. Each question carries 1 mark.

- 1. When two numbers a and b are said to be relatively prime?
- 2. State Chinese remainder theorem.
- 3. Find the sum of divisors of 180.
- 4. Form an equation whose roots are 3 times those of equation $2x^3 5x^2 + 7 = 0$.
- 5. Write Descarte's Rule of signs.

 $(4 \times 1 = 4)$

SECTION - B

Answer any 6 questions out of 9 questions. Each question carries 2 marks :

- 6. Define a pseudo prime. Illustrate with examples.
- 7. Use Euclidean algorithm to find gcd(56, 72).
- 8. Show that $n^7 n$ is divisible by 42.
- 9. Find the remainder when 21000 is divided by 17.
- 10. Check whether the Diophantine equation 6x + 51y = 22 can be solved.
- 11. If gcd(a,b) = 1 then prove that gcd(a + b, a b) = 1 or 2.

P.T.O.

K22U 1319

- 12. Find the polynomial equation of the lowest degree with rational coefficients having $\sqrt{3}$ and 1 2i as two of its roots.
- 13. Form a rational quartic whose roots are 1, -1, 2 + $\sqrt{3}$.
- 14. Remove the second term from the equation $x^3 6x^2 + 4x 7 = 0$. (6x2=12)

SECTION - C

Answer any 8 questions out of 12 questions. Each question carries 4 marks :

- 15. Find the remainder when 18! is divided by 23.
- 16. Use mathematical induction to show that 8 divides $5^{2n} + 7$, for $n \ge 1$.
- 17. Use Euclidean algorithm to obtain integers x and y such that gcd(119, 272) = 119x + 272y.
- 18. Solve the linear congruence $143x = 47 \pmod{20}$.
- 19. Determine all solutions of the Diophantine equation 54x + 21y = 906.
- 20. State and prove Little Fermat's Theorem.
- 21. Use division Algorithm to show that cube of any integer is of the form 7k or $7k \pm 1$.
- 22. Solve the linear system $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{4}$, and $x \equiv 3 \pmod{5}$.
- 23. Show that the equation $x^5 6x^2 4x + 5 = 0$ has atleast two imaginary roots.
- 24. Solve the equation $x^3 12x 65 = 0$ using Cardan's method.
- 25. If α , β , γ , δ are the roots of the equation $x^4 2x^3 + 2x^2 + 1 = 0$, form the equation whose roots are $2 + \frac{1}{\alpha}$, $2 + \frac{1}{\beta}$, $2 + \frac{1}{\gamma}$, $2 + \frac{1}{\delta}$ and hence evaluate $(2\alpha + 1)(2\beta + 1)(2\gamma + 1)(2\delta + 1)$.
- 26. If a, b, c, d are the roots of the equation $x^4 px^3 rx + s = 0$, find the condition that ab = cd. (8x4=32)

-3-

SECTION - D

K22U 1319

Answer any 2 questions out of 4 questions. Each question carries 6 marks :

- 27. State and prove Wilson's theorem.
- 28. State and prove division algorithm theorem.
- 29. If α , β , γ be the roots of the equation $ax^3 + bx^2 + cx + d = 0$, find the values of
 - i) $\sum (\alpha + \beta)^2$
 - ii) $\sum \frac{1}{\alpha \beta}$
 - iii) $\sum \frac{\alpha}{\beta \gamma}$

30. Solve the equation $x^6 - 9x^5 + 21x^4 - 21x^2 + 9x - 1 = 0$.

(2×6=12)