Reg. No.:

Name :

II Semester B.Sc. Hon's (Mathematics) Degree (C.B.C.S.S. – Supplementary/ Improvement) Examination, April 2022 (2016 – 2020 Admissions) BHM 203 : INTEGRAL CALCULUS

Time: 3 Hours

SECTION - A

Answer any 4 questions. Each question carries 1 mark.

 $(4 \times 1 = 4)$

Max. Marks: 60

Evaluate ∫₀^{x̄}/₂ sin⁸x dx

- 2. The volume generated by revolving about the x axis an area bounded by y = f(x) and two ordinates x = a and x = b is given by
- 3. Sum the series $\frac{3}{5} + \frac{4}{5^2} + \frac{3}{5^3} + \frac{4}{5^4} + \dots$
- 4. $\int_{0}^{\frac{\pi}{2}} \log(\tan x) dx$ equals
- 5. Find the limit of the sequence $a_n = \frac{n^2 2n}{3n^2 + n}$.

SECTION - B

Answer any 6 questions. Each question carries 2 marks.

 $(6 \times 2 = 12)$

- 6. Discuss the convergence of the series $\sum \frac{n^2}{3^n}$.
- 7. If $I_n = \int_0^{\frac{\pi}{3}} \tan^n x \, dx$, show that $(n-1) (I_n + I_{n-2}) = \sqrt{3}^{n-1}$.
- 8. Find the area between the curves y = 2 sinx and y = sin2x for 0 \leq x \leq π .
- 9. Find the mean value of $f(x) = 3x^2 3$ on [0, 1]. Does f actually take on this value at some point in the given domain?

P.T.O.

K22U 1318

-2-

- 10. Find the length of the curve $y = \log \sec x$ between the points x = 0 and $x = \frac{\pi}{3}$.
- 11. Show that every convergent sequence is bounded.
- 12. Find the sum of the series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} + \dots$
- 13. Evaluate $\int_0^1 x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx$.
- 14. Find the sum $\sum_{n=1}^{\infty} \frac{2^n 1}{3^n}$,

SECTION - C

Answer any 8 questions. Each question carries 4 marks.

(8×4=32)

- 15. Find the Maclaurin series expansion of log (1 + x).
- 16. Find the area bounded by the curve $xy^2 = 4a^2 (2a x)$ and its asymptote.
- 17. Let $(x) = x^3$, $0 \le x \le 1$. Then prove that f is Riemann integrable over [0, 1].
- 18. Find the moments, mass and centre of mass of a triangular plate with vertices at (0, 0), (1, 0) and (1, 2) and which has a constant density $\delta = 3g/cm^2$.
- 19. Show that the series $\sum \frac{1}{n!}$ is convergent.
- 20. Find the area of the region enclosed by the parabola $x = y^2$ and the line x = y + 2.
- 21. Find the length of the curve $y = x^{\frac{3}{2}}$ from x = 0 to x = 4.
- 22. If $\phi(n) = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$, show that $\phi(n) + \phi(n-2) = \frac{1}{n-1}$. Hence find $\phi(4)$.
- 23. Find the area enclosed by one arc of the cycloid $x = a (\theta \sin \theta)$, $y = a(1 \cos \theta)$ and its base.
- 24. If $(x) = \frac{1}{1-x}$, write the series expansions of f'(x) and f''(x).
- 25. Find first four terms in the Maclaurin series expansion of sin-1x.
- 26. Show that the series $\sum \frac{1}{n}$ diverges.

-3-

K22U 1318

SECTION - D

Answer any 2 questions. Each question carries 6 marks.

(2×6=12)

- 27. Find the surface area of the solid generated by the revolution of the lemniscate $r^2 = a^2 \cos 2\theta$.
- 28. Discuss the convergence of the power series $1 \frac{x-3}{3} + \frac{(x-3)^2}{3^2} \frac{(x-3)^3}{3^3} + \dots$ Also find the radius of convergence of the power series.
- 29. Obtain the reduction formula for ∫ sin^px cos^qx dx. Hence evaluate ∫ sin³x cos²x dx.
- 30. The solid lies between the planes perpendicular to the x axis at x = 0 and x = 4. The cross sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals run from the parabola $y = -\sqrt{x}$ to the parabola = \sqrt{x} . Find the volume of the solid.