

Reg. No.:

Name :

Second Semester M.Sc. Degree (C.B.C.S.S. – OBE – Regular) Examination, April 2024 (2023 Admission) MATHEMATICS

MSMAT02C06/MSMAF02C06: Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer five questions from this Part. Each question carries 4 marks. (5×4)

 $(5 \times 4 = 20)$

- 1. State and prove fundamental theorem of arithmetic.
- 2. Prove that every Euclidean domain is a PID.
- 3. Define algebraic number. Prove that $\sqrt{1+\sqrt{3}}$ is an algebraic number.
- 4. Find the degree and basis for $\mathbb{Q}\left(\sqrt[3]{2},\sqrt{3}\right)$ over \mathbb{Q} .
- 5. Prove that regular 20-gon is constructible.
- 6. Find the number of primitive 15th roots of unity in GF(31).

PART - B

Answer three questions from this Part. Each question carries 7 marks. (3x7=21)

- 7. State and prove Gauss's lemma.
- 8. Let E be a simple extension $F(\alpha)$ of a field F and let α be algebraic over F. Let the degree of $irr(\alpha, F)$ be $n \ge 1$. Prove that every element β of $E = F(\alpha)$ can be uniquely expressed in the form $\beta = b_0 + b_1 \alpha + ... + b_{n-1} \alpha^{n-1}$, where the b_i are in F.
- 9. Prove that $\mathbb{R}[x]/\langle x^2+1\rangle$ is isomorphic to \mathbb{C} .

P.T.O.

K24P 1103

- 10. Find the splitting field of $\{x^2-2,\ x^2-3\}$ over $\mathbb Q$ and what is the order of $G\left(\mathbb Q\left(\sqrt{2},\sqrt{3}\right)\!\middle/\mathbb Q\right)$?
- Define perfect field. Is every field of characteristic zero perfect? Justify.

PART - C

Answer three questions from this Part. Each question carries 13 marks. (3×13=39)

- 12. a) Prove that an ideal (p) in a PID is maximal if and only if p is an irreducible.
 - b) Prove that every PID is a UFD. What about its converse? Justify.
- 13. Prove that $\mathbb{Z}\left[\sqrt{-5}\right] = \left\{a + ib\sqrt{5} : a, b \in \mathbb{Z}\right\}$ is an integral domain but not a UFD.
- State and prove Kronecker's theorem.
- 15. a) Prove that a field E, where F ≤ E ≤ F is a splitting field over F if and only if every automorphism of F leaving F fixed maps E on to itself and thus induces an automorphism of E leaving F fixed.
 - b) Show that for a prime p, the splitting field over $\mathbb Q$ of x^p-1 is of degree p-1 over $\mathbb Q$.
- 16. a) State and prove primitive element theorem.
 - b) State main theorem of Galois theory.