Reg. No. :	

Name :

Second Semester M.Sc. Degree (C. B. S. S. – Supple. (One Time Mercy chance)/Imp.) Examination, April 2024 (2017 to 2022 Admission) MATHEMATICS

MAT 2C 06: Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Show that $\alpha=1+i$ is algebraic over $\mathbb Q$ by finding $f(x)\in\mathbb Q[x]$ such that $f(\alpha)=0$.
- 2. Prove that an ideal $\langle p \rangle$ in a PID is maximal if and only if p is an irreducible.
- 3. Let E be an algebraic extension of a field F. Prove that there exist a finite number of elements $\alpha_1,...,\alpha_n\in E$ such that $E=F(\alpha_1,...,\alpha_n)$ if and only if E is a finite extension of F.
- Prove that doubling the cube is impossible.
- 5. Show that for a prime p, the splitting field over $\mathbb Q$ of x^p-1 is of degree p-1over Q.
- If E is a finite extension of F, prove that {E : F) divides [E : F].

 $(4 \times 4 = 16)$

PART - B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Prove that there exist an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.
 - b) Let $\alpha = \sqrt{2} + i$. Find $irr(\alpha, \mathbb{Q})$ and $deg(\alpha, \mathbb{Q})$ for the algebraic number $\alpha \in \mathbb{C}$.

P.T.O.

KOAN

K24P 0861

- 8. a) State and prove Gauss's lemma. b) If D is a UFD, prove that D[x] is a UFD.
- 9. a) State and prove Euclidean algorithm.
 - b) Prove that the norm function N hold following properties for $\alpha, \beta \in \mathbb{Z}$ [i] :
 - i) $N(\alpha) \ge 0$
 - ii) $N(\alpha) = 0$ if and only if $\alpha = 0$ iii) $N(\alpha\beta) = N(\alpha)N(\beta)$.

Unit - II

- 10. a) If E is a finite extension field of a field F and K is a finite extension field of E, prove that K is a finite extension of F and [K : F] = [K : E] [E : F].
 - b) Prove that a field F is algebraically closed if and only if every nonconstant polynomial in F[x] factors in F[x] into linear factors.
 - c) Prove that $\mathbb{Q}(\sqrt{3} + \sqrt{7}) = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.
- 11. a) Let α and β be two constructible numbers. Prove that $\alpha+\beta,\,\alpha-\beta,\,\alpha\beta$ and α/β if $\beta \neq 0$ are constructible.
 - b) Prove that trisecting an angle is impossible.
- a) Prove that a finite field GF(pⁿ) of pⁿ elements exists for every prime power pⁿ.
 - b) Prove that the set of all automorphisms of $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$ leaving \mathbb{Q} fixed is isomorphic to Klein 4-group.

Unit - III

- State and prove isomorphism extension theorem.
- 14. a) Prove that a field E, where $F \le E \le \overline{F}$, is a splitting field if and only if every automorphism of Fleaving F fixed maps E onto itself and thus induces an automorphism of E leaving F fixed. b) State main theorem of Galois theory.
- 15. a) If E is a finite extension of F, prove that E is separable over F if and only if

each α in E is separable over F.

b) Prove that every finite field is perfect.

 $(4 \times 16 = 64)$