Reg. No.:

Name :

III Semester M.Sc. Degree (C.B.S.S. - Supple./Imp.) Examination, October 2024 (2021 and 2022 Admissions) MATHEMATICS

MAT3C11: Number Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from Part A. Each question carries 4 marks. (4x4=16)

- 1. If (a, b) = 1, then (a + b, a b) is either 1 or 2.
- 2. State and prove Euler-Fermat theorem.
- Determine whether 219 is a quadratic residue or nonresidue mod 383. 4. Prove that m is prime if and only if $exp_m(a) = m - 1$ for some a.
- 5. Express the polynomial $t_1^2 + t_2^2 + t_3^2$ in terms of elementary symmetric
- polynomials. 6. Given $K=\mathbb{Q}(\sqrt[4]{2})$, Find all monomorphisms $\sigma:K\to\mathbb{C}$ and the minimum
- polynomials (over \mathbb{Q}) and field polynomials (over K) of $\sqrt[4]{2}$.

PART - B

Answer any four questions from Part B not omitting any Unit. Each question $(16 \times 4 = 64)$ carries 16 marks.

Unit - 1

- 7. a) Prove that the infinite series $\sum_{n=1}^{\infty} \frac{1}{p_n}$ diverges.
 - b) State and prove division algorithm .

P.T.O.

K24P 3339

-2-

- 8. a) Show that the set of all arithmetical functions with $f(1) \neq 0$ forms an abelian group with respect to the Dirichlet product.
- b) State and prove Mobius inversion formulae. 9. a) State and prove Lagrange's theorem.
- - b) Find all x which simultaneously satisfy the system of congruences. $x \equiv 1 \pmod{3}$

 $X \equiv 2 \pmod{4}$

 $X \equiv 3 \pmod{5}$

Unit - 2

- 10. a) State and prove Euler's criterion.
- b) Determine those odd primes p for which 3 is a quadratic residue and those 11. a) Given x be an odd integer. If $\alpha \ge 3$, then prove that
- $x^{\frac{\gamma_1-\gamma_2}{2}} \equiv 1 \pmod{2^{\alpha}}$ and there are no primitive roots modulo 2^{α} .

b) Given $m \ge 1$, where m is not of the form $m = 1, 2, 4, p^{\alpha}$ or $2p^{\alpha}$, where p is an

- odd prime. Then prove that for any a with (a, m) = 1 we have $a^{\frac{4(m)}{2}} \equiv 1 \pmod{m}$, so there are no primitive roots mod m. 12. a) Compare private key and public key crypto systems. b) Encrypt the message "HAVE A NICE DAY" using caeser ciphar.

13. a) Let G be a free abelian group of rank n with basis $\{x_1, ..., x_n\}$. Suppose (a_{ij}) is an $n \times n$ matrix with integer entries. Then prove that the elements

 $y_i = \sum_i a_{ij} x_i$ form a basis of G if and only if a_{ij} is unimodular.

-3-

Unit - 3

K24P 3339

- b) Prove that every subgroup H of a free abelian group G of rank n is free of rank s \leq n and there exist a basis $u_1,\ \dots$, u_n for G and positive integers $\alpha_1,\ \dots$, α_s such that $\alpha_{\rm 1}$ u $_{\rm 1},$..., $\alpha_{\rm s} {\rm u_s}$ is a basis for H.
- 14. a) If K is number field then prove that $K = \mathbb{Q}(\theta)$ for some algebraic number θ . b) Prove that the algebraic integers form a subring of the field of algebraic
- numbers. 15. a) Prove that the minimum polynomial of $\zeta = e^{\pi}$, where p is an odd prime, over
 - $\mathbb{Q} \text{ is } f(t) = t^{p-1} + t^{p-2} + ... + t + 1 \text{ and the degree of } \mathbb{Q} \left(\zeta \right) \text{ is } p-1.$ b) Prove that the ring $\mathfrak D$ of integers $\mathbb Q(\zeta)$ is $\mathbb Z[\zeta]$.