K24P 3340

Reg. No.:	
Name :	

III Semester M.Sc. Degree (CBSS – Supple./Imp.) Examination, October 2024 (2021 and 2022 Admissions)

MATHEMATICS

MAT3C12 : Functional Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- Give a continuous function vanishing at infinity, but does not have a compact support and prove your claim.
- 2. Show that c_{00} is not a closed subspace of l^{∞} .
- 3. Show that a closed map on a metric space need not be continuous.
- 4. State uniform boundedness principle.
- Prove that a linear space is uniformly convex in the norm induced by an inner product.
- 6. Prove that the norm in l^{∞} cannot be obtained from an inner product. (4x4=16)

PART - B

Answer four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Show that for $1 \le p < \infty$, $c_{00} \subset l^p \subset c_0 \subset c \subset l^\infty$, where all the inclusions are proper.
 - b) If X is a subspace of B(T) with the sup norm, $1 \in X$ and f be a continuous linear functional such that ||f|| = f(1) then show that f is positive.

P.T.O.

K24P 3340

- 8. a) If X is a normed space and Y is a subspace of X which is not a hyper space in X, then show that the complement Y^c is connected.

 b) State and
 - b) State and prove Hahn-Banach extension Theorem.
- a) Let X and Y be normed spaces and X ≠ {0}. Show that BL(X, Y) is a Banach space in the operator norm if and only if Y is a Banach space.
 - b) Prove that a normed space can be embedded as a dense subspace of a Banach space.

Unit – II

- 10. a) State and prove Resonance Theorem.
 - b) Let X and Y be normed spaces and F: X → Y be linear spaces. Show that
 F is continuous if and only if goF is continuous for every g ∈ Y'.
- 11. a) State and prove Open Mapping Theorem.
 - b) State Closed Graph Theorem and show by an example that Closed Graph Theorem may not hold if the normed spaces X and Y are not banach spaces.
- Prove that the coefficient functionals corresponding to a Schauder basis for a Banach space X are continuous.

Unit - III

- 13. a) State and prove Bessel's inequality.
 - b) Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. Assume that if $X \in H$ and $\langle x, u_{\alpha} \rangle = 0$ for all α , then x = 0. Prove that $\{u_{\alpha}\}$ is an orthonormal basis for H.
- a) If a non-zero Hilbert space H over K has a countable orthonormal basis, then prove that H is linearly isometric to Kⁿ for some n, or l².
 - b) If E is a subset of an inner product space X and x ∈ E, then show that there exists a best approximation from E to X if and only if x ∈ E.
- 15. a) State and prove unique Hahn Banach extension theorem.
 - b) State Projection theorem.

(4×16=64)