Reg. No.:

Name :

Second Semester M.Sc. Degree (CBSS – Supple. (One Time Mercy Chance)/Imp.) Examination, April 2024 (2017 to 2022 Admissions) **MATHEMATICS**

MAT2C07: Measure and Integration

Time: 3 Hours

Max. Marks: 80

Answer any four questions from this Part. Each question carries 4 marks.(4x4=16)

PART - A

- 1. Define Lebesgue outer measure. Show that $m^*(A) \le m^*(B)$ if $A \subseteq B$. 2. Prove that, for any set A and any $\epsilon > 0$ there is an open set O containing A
- and such that $m^*(O) \le m^*(A) + \varepsilon$. Show that if f is integrable, then f is finite valued a.e.
- 4. Show that here exist a smallest ring and a smallest σ-ring containing a given
- class of subsets of a space. 5. Define measure space and measurable space. Give examples.
- 6. Prove that if $\mu(x) < \infty$ and $0 , then <math>L^q(\mu) \subseteq L^p(\mu)$.
- PART B

Answer any four questions from this Part without omitting any Unit. Each question

Unit - I

- 7. a) Prove that the following statements regarding the set E are equivalent. i) E is measurable
 - ii) $\forall \epsilon > 0$, there exists O, an open set, $O \supseteq E$ such that $m^*(O E) \le \epsilon$

carries 16 marks.

P.T.O.

0

D

 $(4 \times 16 = 64)$

K24P 0862

iii) there exists G, a $G_{\delta}\text{-set},$ $G\supseteq E$ such that $m^{\star}(G-E)=0$

LINDON DA MAR KANAN IN SANCHAN KANAN KANAN

- iv) \forall ϵ > 0, there exists F, a closed set, F \subseteq E such that m*(E F) \leq ϵ
- v) there exists F, a F_{σ} -set, $F \subseteq E$ such that $m^*(E F) = 0$
- b) Show that every countable set has measure zero.
- 8. a) Show that the class M of Lebesgue measurable sets is a σ -algebra.
- b) Show that there exists uncountable sets of zero measure. 9. a) Prove that Lebesgue outer measure is countably additive on disjoint
 - measurable sets. b) Prove that not every measurable set is a Borel set.
- Unit II 10. a) Let f be bounded and measurable on a finite interval [a, b] and let $\epsilon > 0$.

- Then show that there exist. i) a step function h such that $\int_a^b |f-h| dx < \epsilon$, ii) a continuous function g such that g varnishes out side a finite interval
 - and $\int_a^b |f-g| dx < \varepsilon$. b) Show that if $\alpha > 1$,

$$\int_{0}^{1} \frac{\sin x}{1 + (nx)^{\alpha}} dx = O(n^{-1}) as n \to \infty.$$
11. a) Show that $H(R) = [E : E \subseteq \bigcup_{n=1}^{n} E_n, E_n \in R].$

extension to the σ -ring S(R).

b) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. 12. a) Show that if μ is a σ -finite measure on R, then the extension $\overline{\mu}$ of μ is also

b) If μ is a σ -finite measure on a ring R, then prove that it has a unique

such that $\lim f_{n_i} = \text{fa.e.}$ Also prove that $f \in L^p(\mu)$ and $\lim ||f_n - f||_p = 0$. 14. a) State and prove Holder's Inequality. When does the equality occur?

b) If $\rho(f, g) ||f - g||_p$, then prove that, for $p \ge 1$, ρ is a metric on $L^p(\mu)$.

-3-

Unit - III

13. If 1 $\leq p < \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $||f_n - f_m||_p \to 0$ as n, m $\rightarrow \infty$, then prove that there exist a function f and a subsequence $\{n_i\}$

15. Let $p\geq 1$ and $f,\,g\in L^p(\mu),$ then prove that

 $\left(\int |f+g|^p \ d\mu\right)^p \leq \left(\int |f|^p \ d\mu\right)^p + \left(\int |g|^p \ d\mu\right)^p$ When does the equality occur? Justify your answer.

K24P 0862