Reg. No. :	
Name :	

Second Semester M.Sc. Degree (C.B.S.S. - Supple. (One Time Mercy

Chance)/Imp.) Examination, April 2024 (2017 to 2022 Admissions) MATHEMATICS

MAT 2C 09: Foundations of Complex Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Attempt any four questions from this part. Each question carries 4 marks :

- 1. Given that γ and σ are closed rectifiable curves having the same initial points. Prove that $n(\gamma + \sigma, a) = n(\gamma, a) + n(\sigma, a)$ for every $a \notin \{\gamma\} \cup \{\sigma\}$.
- 2. Let f be analytic on B(0, 1) and suppose $|f(z)| \le 1$ for |z| < 1. Show that $|f'(0)| \le 1$.
- 3. Does the function $f(z) = z^2 \sin\left(\frac{1}{z^2}\right)$ has an essential singularity at z = 0? Justify your answer.
- 4. Using residue Theorem, prove that $\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}.$ 5. Define the set $C(G, \Omega)$ and show that it is non-empty.
- 6. State the Weierstrass Factorization theorem.

b) State and prove The Open Mapping Theorem.

PART - B

carries 16 marks:

Answer any four questions from this part without omitting any Unit. Each question

Unit - I 7. a) Prove the following : If G is simply connected and $f:G\to C$ is analytic in

G then f has a primitive in G.

P.T.O.

K24P 0864 8. State and prove the Third Version of Cauchy's Theorem.

- 9. Prove the following : let G be a connected open set and let $f:G\to C$ be an
- analytic function. Then the following conditions are equivalent. a) $f \equiv 0$;
 - b) there is a point a in G such that $f^n(a) = 0$ for each $n \ge 0$;
 - c) $\{z \in G : f(z) = 0\}$ has a limit point in G.
 - Unit II

10. a) Show that for a > 1, Show that $\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 - 1}}$

- b) State and prove the Residue theorem. 11. State and prove the Laurent Series Development.
- 12. Prove the following: a) If |a| < 1 then $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$ is a one-one map of $D = \{z : |z| < 1\}$ on to itself;
 - the inverse of ϕ_a is ϕ_{-a} . Furthermore, ϕ_a maps ∂D on to ∂D , $\phi'_a(0) = 1 |a|^2$ and $\varphi'_a(a) = (1 - |a|^2)^{-1}$. b) Let $f(z) = \frac{1}{z(z-1)(z-2)}$; give the Laurent series of f(z) in each of the following annuli:

Unit - III

- i) ann(0; 0, 1), ii) ann (0; 1, 2), iii) ann (0; 2, ∞).
- 13. a) Prove the following: If G is open in C then there is a sequence {Kn} of compact subsets of G such that $G=\cup_{n=1}^{\infty}K_n$, Moreover the sets K_n can be

k_n ⊂ int K_{n+1}.

ii) $K \subset G$ and K is compact implies $K \subset K_n$ for some n. iii) Every component of $C_{\infty} - K_n$ contains a component of $C_{\infty} - G$. b) State and prove Hurwitz's theorem.

chosen to satisfy the following conditions:

b) Prove the following : If $\operatorname{Rez}_n > 0$ then the product $\prod z_n$ converges absolutely iff the series $\Sigma(z_n - 1)$ converges absolutely.

14. a) With the usual notations, prove that $|1 - E_p(z)| \le |z|^{p+1}$ for $|z| \le 1$ and $p \ge 0$.

b) Discuss the convergence of the infinite product $\prod_{n=1}^{\infty} \frac{1}{n^p}$ for p > 0.

15. a) Show that $\prod (1+z_n)$ converges absolutely iff $\prod (1+|z_n|)$ converges.

K24P 0864

- c) Prove the following : Let $\operatorname{Rez}_n > 0$ for all $n \ge 1$. Then $\prod_{n=1}^{\infty} Z_n$ converges to a non zero number iff the series $\sum_{n=1}^{\infty} \log z_n$ converges.