K23P 3297

Reg. No.:

Name :

First Semester M.Sc. Degree (CBSS - Supple. (One Time Mercy Chance)/ Imp.) Examination, October 2023 (2017 to 2022 Admissions)

MATHEMATICS MAT1C03 : Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16) Define a neighborhood of a point p. Prove that every neighborhood is an open

- set. 2. If E is an infinite subset of a compact set K, then prove that E has a limit point
- in K. 3. When can you say that a function f is said to be differentiable at a point x? Let
- is continuous at x. 4. Suppose f is differentiable in (a, b). If $f'(x) \ge 0$ for all $x \in (a, b)$, then prove that f is monotonically increasing.

f be defined on [a, b]. If f is differentiable at a point x ∈ [a, b], then prove that f

- 5. Give an example of a continuous function, which is not of bounded variation. Justify.
- 6. Let $f: [a, b] \to \mathbb{R}^n$ and $g: [c, d] \to \mathbb{R}^n$ be two paths in \mathbb{R}^n , each of which is one to one on its domain. Then prove that f and g are equivalent if and only if they have the same graph.

P.T.O.

carries 16 marks.

a) Prove that every k-cell is compact.

exists, then prove that f'(x) = 0.

which f is discontinuous is at most countable.

K23P 3297

PART - B

-2-

Answer any four questions from this part without omitting any Unit. Each question

 $(4 \times 16 = 64)$

UNIT-I 7. a) Let A be a countable set, and let B_n be the set of all n-tuples $(a_1, a_2, ..., a_n)$, where $a_k \in A$ (k = 1, 2, ..., n) and the elements $a_1, a_2, ..., a_n$

- need not be distinct. Then prove that B_n is countable.
- b) Let A be the set of all sequences whose elements are the digits 0 and 1. Then prove that this set A is uncountable. c) Prove the following : For any collection {G_α} of open sets ∪_αG_α is open.
 - ii) For any collection $\{F_{\alpha}\}$ of closed sets $cap_{\alpha}F_{\alpha}$ is closed. iii) For any finite collection $G_1, G_2, ..., G_n$ of open sets, $\bigcap G_i$ is open.
 - b) Let P be a non-empty perfect set in Rk. Then prove that P is uncountable.

iv) For any finite collection F_1 , F_2 , ..., F_n of closed sets, $\bigcup_{i=1}^n F_i$ is closed.

9. a) Define uniformly continuous mapping. Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X.

b) Let f be monotonic on (a, b). Then prove that the set of points of (a, b) at

10. a) When can you say that a real function f has a local maximum? Let f be defined on [a, b]; if f has a local maximum at a point $x \in (a, b)$, and if f'(x)

UNIT - II

b) State and prove the generalized mean value theorem. c) Give an example to show that the mean value theorem fails to be true for

complex-valued functions. Justify.

b) $|f| \in R(\alpha)$ and $\int_{0}^{b} f d\alpha \leq \int_{0}^{b} |f| d\alpha$.

a) $fg \in R(\alpha)$

b) Prove that $\int_{0}^{b} f d\alpha \leq \int_{0}^{-b} f d\alpha$.

-3-

11. a) Define the refinement of a partition P. If P* is a refinement of P, then prove

that $L(P, f, \alpha) \le L(P^*, f, \alpha)$ and $U(P^*, f, \alpha) \le U(P, f, \alpha)$.

12. a) If $f \in R(\alpha)$ and $g \in R(\alpha)$ on [a, b], then prove that

K23P 3297

b) Suppose $c_n \ge 0$ for 1, 2, 3, ..., $\sum c_n$ converges, $\{s_n\}$ is a sequence of distinct points in (a, b) and $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x-s_n)$. Let f be continuous on [a, b]. Then prove that $\int\limits_a^b f \, d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$.

is $\Lambda_f(a, b) = \int_a^b |f'(t)| dt$.

13. a) Let $f \in R$ on [a, b]. For $a \le x \le b$, let $F(x) = \int f(t) dt$. Then prove that F is continuous on [a, b]. Also prove that if f is continuous at a point x0 of [a, b], then F is differentiable at x_0 and $F'(x_0) = f(x_0)$. b) State and prove the fundamental theorem of calculus.

UNIT - III

- [a, b] ? If f is monotonic on [a, b], then prove that f is of bounded variation [a, b].
- b) If f is continuous on [a, b], and if f' exists and is bounded in the interior, say $|f'(x)| \le A$ for all x in (a, b), then prove that f is of bounded variation on [a, b]. c) If f is of bounded variation on [a, b], then prove that f is bounded on [a, b].

a) Define Rectifiable paths and its arc length. Consider a path f: [a, b] → R_n

14. a) When can you say that a function f is said to be of Bounded Variation on

with components $f = (f_1, f_2, ..., f_n)$. Then prove that f is rectifiable if and only if each component fk is of bounded variation on [a, b]. Also if f is rectifiable, prove that $V_k(a, b) \le \Lambda_f(a, b) \le V_1(a, b) + ... + V_n(a, b) (k = 1, 2, ..., n)$. b) If f' is continuous on [a, b], then prove that f is rectifiable and the arc length