Reg. No.:

Name :

First Semester M.Sc. Degree (CBSS - Supple. (One Time Mercy Chance)/Imp.) Examination, October 2023

(2017 to 2022 Admissions) MATHEMATICS

MAT1C01: Basic Abstract Algebra

Time: 3 Hours

carries 16 marks.

Max. Marks: 80

PART - A

Answer any four questions from this Part, Each question carries 4 marks.

- 1. Find all abelian groups, up to isomorphism of order 32.
- 2. Prove or disprove: Every abelian group of order 30 is cyclic.
- Prove that the field Q is a field of quotients of Z.
- Show that the group Z has no principal series.
- Show that √2 is not a rational number. 6. Find all p such that x + 2 is a factor of $x^4 + x^3 + x^2 - x + 1$ in $Z_p[x]$.
- PART B Answer four questions from this Part without omitting any Unit. Each question

Unit - I

- 7. a) Prove the following : Let X be a G set. Then $|G_X| = (G:G_X)$. If |G| is finite, then |G_v| is a divisor of |G|.
 - b) State and prove The first Sylow Theorem.

P.T.O.

K23P 3295

-2-

- 8. a) Let G be a group of order 108. Show that there exists a normal subgroup of order 27 or 9. b) Are the groups $Z_4 \times Z_{18} \times Z_{15}$ and $Z_3 \times Z_{36} \times Z_{10}$ isomorphic? Why or why
 - not? c) Prove that the center of a finite non-trivial p-group G is non-trivial.
- 9. a) If H and K are finite subgroups of a group G, prove that $|HK| = \frac{(|H|)(|K|)}{(|H \cap K|)}$.
- b) Prove that every group of order 255 is cyclic.
 - Show that every group of order 30 contains a subgroup of order 15.
 - Unit II

10. a) Prove the following: Let F be a field of quotients of D and let L be any field containing D. Then there exists a map $\psi: F \to L$ that gives an isomorphism

- of F with a sub field of L such that ψ (a) = a for all a \in D. b) Show that Q under addition is not a free abelian group. c) Let $G = Z \times Z \times Z$, $H = Z \times Z \times \{0\}$ and $N = \{0\} \times Z \times Z$. Show that HN/N
- 11. a) Prove that any two fields of quotients of an integral domain D are isomorphic. b) Describe the field F of quotients of the integral subdomain $\{n+2mi|n,\,m\in\,Z\}$
 - c) State and prove the second Isomorphism Theorem.
- 12. a) Let $\phi: Z_{18} \to Z_{14}$ be a homomorphism where $\phi(1) = 8$. i) Find the kernel K of φ.

isomorphic to Z and $H/(H \cap N)$ isomorphic to Z.

- ii) List the cosets in Z₁₈/K.
 - iii) Find the group o[Z₁₈]. b) Show that S_n is not solvable for $n \ge 5$.

of C.

- c) Show that if G and G' are free abelian groups, then $G \times G'$ is free abelian.

13. a) Prove that the polynomial $\Phi_p(x) = \frac{x^p - 1}{x - 1}$ is irreducible over Q for any prime p.

b) Prove the following: Let R be a commutative ring with unity. Then M is a

K23P 3295

maximal ideal of R if and only if R/M is a field.

14. a) Prove the following: Let $f(x) \in F[x]$, and let f(x) be of degree 2 or 3. Then f(x) is reducible over F if and only if it has a zero in F.

-3-

Unit - III

- b) If R is a ring with unity and N is an ideal of R containing a unit. Prove that N = R.
- c) Does $Z_5[x]/(x^3 + 3x + 2)$ is a field ? Justify your answer. d) Describe all ring homomorphisms of Z × Z in to Z × Z.
- 15. a) Prove the following : If R is a ring with unity, then the map $\varphi:Z\to R$ given by $\phi(n) = n.1$ for $n \in Z$ is a homomorphism of Z in to R. b) State and prove The Eisenstein Criterion.

c) Show that $25x^5 - 9x^4 - 3x^2 - 12$ is irreducible over Q.