Reg. No. : Name :

II Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS

MAT 2C 07: Measure and Integration

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any 4 questions. Each question carries 4 marks.

- 1. Show that every countable set has measure zero.
- 2. Define measurable function. Show that every continuous functions are measurable.
- 3. Let f(x) is function defined on [0, 2] defined by : f(x) = 1 for x rational, if x is irrational, f(x) = -1, then find $\int_0^2 f dx$.
- 4. If A and B are disjoint measurable sets, then show that $\int_{A \cup B} f dx = \int_A f dx + \int_B f dx$.
- Show that L^{*}(X, μ) is a vector space over the real numbers.
- 6. State and prove Minkowski's inequality.

PART - B

Answer any 4 questions without omitting any Unit . Each question carries 16 marks.

Unit - I

- a) Prove that Every interval is measurable.
 - b) Define Borel sets. Show that every Borel set is measurable.
- 8. a) Show that collection of measurable function forms a vector space over real numbers.
 - Show that Borel set is a proper subset of Lebesgue Measurable sets.
- a) State and prove Fatou's Lemma.
 - b) Let f and g be non-negative measurable functions. Then show that $\int f dx + \int g dx = \int (f + g) dx.$

P.T.O.

K23P 0499

Unit - II

- 10. a) State and prove Lebesgue's Dominated Convergence theorem.
 - b) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e.
- 11. a) Let μ^* be an outer measure on $\mathcal{H}(\mathcal{R})$ and let \mathcal{S}^* denote the class of μ^* measurable sets. Then prove that S^* is a σ ring and μ^* restricted to S^* is a complete measure.
 - b) If μ is a σ -finite measure on a ring \mathcal{R} , then show that it has a unique extension to the σ -ring S(R).
- a) Let f be bounded and measurable on a finite interval [a, b] and let ∈ > 0, then show that there exist a continuous function g such that g vanishes outside a finite interval and $\int_a^b |f - g| dx < \epsilon$.
 - b) Define σ -finite and complete measure on a ring \mathcal{R} . Also show that Lebesgue measure m defined on M, the class of measurable sets of \mathbb{R} is σ -finite and complete.

Unit - III

- 13. a) Define L^p Space for $1 \le p \le \infty$. Also show that if $\mu(X) < \infty$ and 0then show that $L^{q}(\mu) \subseteq L^{p}(\mu)$
 - b) State and prove Holder's Inequality. When does its equality occurs?
- 14. a) Let f_n be a sequence of measurable functions, $f_n: X \to [0, \infty]$, such that $f_n(x) \cap T$ for each x and let $f = \lim_{n \to \infty} f_n$ then prove that $\int f dx = \lim_{n \to \infty} \int f_n d\mu$.
 - b) Let $[[X, S, \mu]]$ be a measure space and f a non-negative measurable function. Then prove that $\phi(E) = \int_E f d\mu$ is a measure on the measurable space [[X, S]]. Also show that if $\int d\mu < \infty$ then $\forall \epsilon > 0$, $\exists \delta > 0$ such that if $A \in S$ and $\mu(A) < \delta$, then $\phi(A) < \epsilon$.
- 15. a) If $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^P(\mu)$ such that $||f_n f_m||_p \to 0$ as $n, m \to \infty$ then show that there exists a function f and a sequence $\{n_i\}$ such
 - that lim $f_{n_i} = f$ a.e. and $f \in L^p(\mu)$. b) Let f_n be a sequence in $L^{\infty}(\mu)$ such that $||f_n - f_m|| \to 0$ as $n, m \to \infty$. Then show that there exists a function f such that $\lim_{n \to \infty} f_n = f$ a.e., $f \in L^{\infty}(\mu)$ and $\lim ||f_n - f||_{\infty} = 0.$