Reg. No. :

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.)
Examination, April 2023
(2019 Admission Onwards)
MATHEMATICS

MAT 2C 06: Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 80

PART – A

Answer any 4 questions. Each question carries 4 marks.

- 1. Find $\left[Q\left(\sqrt{2},\sqrt{3}\right);Q\right]$.
- 2. Find the primitive 5^{th} root of unity in Z_{11} .
- 3. Distinguish between primes and irreducibles of an integral domain.
- 4. Is Z[i] is an integral domain?
- 5. What is the order of $G(Q(\sqrt[3]{2})/Q)$?
- 6. Show that $\sqrt{1+\sqrt{5}}$ is algebraic over Q.

PART - B

Answer 4 questions without omitting any Unit. Each question carries 16 marks.

Unit - I

7. a) Prove that every PID is a UFD.	7
b) Prove that $Z[\sqrt{-5}]$ is an integral domain but not a UFD.	9
8. a) State and prove Kronecker's theorem.	8
b) How could we construct a field of 4 elements?	8

P.T.O.

6

10

K2	3P	0498	
9	a)	State and prove Gauss's Lemma.	6
٠.		An ideal in a PID is maximal if and only if p is irreducible.	5
		Prove that every Euclidian domain is PID.	5
		Unit – II	
10.	a)	If α and β are constructible real numbers, then $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$ and α/β , if $\beta \neq 0$.	12
	b)	If E is a finite of characteristic P, then E contains exactly P^n elements for some positive n.	4
11.	a)	Prove that trisecting an angle is impossible.	8
	b)	Prove that a finite field GF(P ⁿ) of P ⁿ elements exists for every prime power P ⁿ .	8
12.	a)	State and prove Conjugation isomorphism theorem.	10
(3,00)		Define Frobenius automorphism.Also prove that $F_{\left\{\sigma_{p}\right\}}\cong Z_{p}$.	6
		Unit – III	
13.	a)	A Field E, where $F \le E \le K$, is a splitting field over F if only if every automorphism of \overline{F} leaving F fixed maps E onto itself and thus induces an automorphism of F leaving F fixed.	12
	b)	Let $f(x)$ be irreducible in $F[x]$. Then prove that all zeros of $f(x)$ in \overline{F} have the same multiplicity.	4
14.	a)	Prove that every finite field is perfect.	12
2000		Find the splitting field of $x^3 - 2$ over Q.	4
	01.5		

15. a) State the main theorem of Galois Theory.

b) State and prove Primitive Element theorem.