ARTHUR DIE HADE WITH WEIGH WIT EINE WEI

Reg. No. :

Name :

IV Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards)

160

MATHEMATICS MAT4C15: Operator Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Let X be a Banach space over K and let $A \in BL(X)$. Prove that $\sigma(A)$ is a compact subset of K. 2. If $x_n \xrightarrow{m} x$ and $y_n \xrightarrow{m} y$ in a normed space X and $k_n \to k$ in K, prove that
- $x_n + y_n \xrightarrow{\omega} x + y \text{ and } k_n x_n \xrightarrow{\omega} kx$. 3. Let X be a reflexive normed space. Prove that X is separable if and only if X'
- is separable. 4. Let X and Y be a normed spaces and $F: X \rightarrow Y$ be linear. Prove that F is a compact map if and only if for every bounded sequence (x_n) in X_n (F (x_n)) has
- a subsequence which converges in Y. Let H be a Hilbert space and A∈BL(H). Prove that A is normal if and only if $|| A(x) || = || A^*(x) || \text{ for all } x \in H.$
- Let A ∈ BL(H). If A is compact, prove that A* is also compact.

P.T.O.

K23P 0203

PART - B

Answer four questions from this Part without omitting any Unit. Each question

-2-

carries 16 marks. Unit - I

- Let X be a nonzero Banach space over C and A ∈ BL (X). Prove that a) σ(A) is non empty.
 - b) $r_{\sigma}(A) = \inf_{n=1,2,...} ||A^n||^{\frac{1}{n}} = \lim_{n\to\infty} ||A^n||^{\frac{1}{n}}$.
- 8. a) Let X be a normed space and A∈BL(X) be of finite rank. Prove that
- $\sigma_a(A) = \sigma_a(A) = \sigma(A)$. b) Let X, Y and Z be normed spaces. Let $F \in BL(X, Y)$ and $G \in BL(Y, Z)$. Prove that
 - i) (GF)' = F'G'
 - ii) ||F'|| = ||F|| = ||F''|| and
 - iii) $F'' J_x = J_y F$.
- 9. a) Let X be a normed space. If X' is separable, prove that X is separable.
- b) Prove that $x_n \xrightarrow{a} x$ in l^t if and only if $x_n \to x$ in l^t . Unit - II
- 10. Let X be a normed space. Prove that X is reflexive if and only if every bounded

such that $||x_n|| \to 1$ and $||x_n + x_m|| \to 2$ as m, $n \to \infty$. Prove that (x_n) is a

- sequence in X has a weak convergent subsequence. 11. a) Let X be a uniformly convex normed space and (x,) be a sequence in X
- Cauchy sequence. b) Let X and Y be normed spaces and F∈BL(X, Y). If F∈CL(X, Y), prove that F'∈CL(X, Y). Also show that the converse holds if Y is a Banach space.

Let X be a normed space and A∈CL(X). Prove that dim

 $Z(A'-kI)=\dim Z(A-kI)<\infty$ for $0\neq k\in K$.

b) Let H be a Hilbert space and A∈BL(H). Prove that R(A) = H if and only if A*

0

K23P 0203

is bounded below. 14. a) Let H be a Hilbert space and A∈BL(H). Let A be self adjoint. Prove that $||A||=\sup{\{|\langle A(x),\,x\rangle|:x\in H,\,||x||\,\leq\,1\}}.$

-3-

Unit - III

13. a) Let H be a Hilbert space and A∈BL(H). Prove that there is a unique

 $B \in BL(H)$ such that for all $x, y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$.

- b) State and prove generalized Schwarz inequality. 15. a) Let H be a Hilbert space and $A \in BL(H)$. Prove that $\sigma_{\epsilon}(A) \subset \sigma_{a}(A)$ and $\sigma(\mathsf{A}) = \sigma_{\mathsf{a}}(\mathsf{A}) \cup \{\mathsf{k} : \overline{\mathsf{k}} \in \sigma_{\mathsf{e}}(\mathsf{A}^{\star})\}.$
 - b) Let H ≠ {0} and A∈BL(H) be self adjoint. Prove that $\{m_{_A},\,M_{_A}\}\subset\sigma_{_A}(A)=\sigma(A)\subset[m_{_A},\,M_{_A}].$