

Reg. No. :

K23P 1408

Name :

III Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination,
October 2023
(2020 Admission Onwards)

MATHEMATICS
MAT3C11: Number Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from Part A. Each question carries 4 marks.

- 1. Prove that if (a, b) = 1 then $(a^n, b^k) = 1$ for all $n \ge 1$, $k \ge 1$.
- 2. Find all integers such that $\phi(n) = \frac{n}{2}$
- 3. Find the quadratic residues and non residue modulo 11.
- 4. Encrypt the message "RETURN HOME" using caeser ciphar.
- 5. Define an R-module. Find all submodules of \mathbb{Z} -module.
- 6. Check whether $e^{\frac{2\pi i}{23}}$ is algebraic integer or not ?

PART - B

Answer any four questions from Part B not omitting any Unit. Each question carries 16 marks.

Unit - 1

- a) State and prove fundamental theorem of arithmetic.
 - b) Given that a and b are integers with b > 0. Then prove that there exists a unique pair of integers q and r such that a = bq + r, with $0 \le r < b$ and r = 0 if and only if b|a.
- 8. a) If $n \ge 1$, prove that $\sum_{d|n} \phi(d) = n$.
 - b) Assume f is multiplicative. Prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n)$ f(n) for all $n \ge 1$.

P.T.O.

K23P 1408

- 9. a) State and prove Chinese remainder theorem.
 - b) Find all positive integers n for which $n^{13} \equiv n \pmod{1365}$.

Unit - 2

- 10. a) State and prove Gauss' lemma.
 - b) Define Jacobi symbol and prove that $(-1/p) = (-1)^{\frac{p-1}{2}}$ and $(2/p) = (-1)^{\frac{p^2-1}{8}}$.
- 11. a) Suppose (a, m) = 1. Prove that a is a primitive root modulo m if and only if the numbers a, a^2 , ..., $a^{\phi(m)}$ form a reduced residue system modulo m.
- b) If p is an odd prime and $\alpha \le 1$ then prove that there exist odd primitive roots g modulo p^{α} and each such g is also a primitive root modulo $2p^{\alpha}$.
- a) Explain RSA public key algorithm with an example.
 - b) Obtain all solutions of the knapsack problem $28 = 3x_1 + 5x_2 + 11x_3 + 20x_4 + 41x_5.$

Unit - 3

- 13. a) Given R is a ring. Then prove that every symmetric polynomial in R[t₁,..., t_n] is expressible as a polynomial with coefficients in R in the elementary symmetric polynomials s₁,..., s_n.
 - b) Let G be a free abelian group of rank r and H is a subgroup of G. Then prove that ^GH is finite if and only if the rank of G and H are equal.
- 14. a) Prove that the set A of algebraic numbers is a subfield of the complex field $\mathbb C.$
 - b) Prove that a complex number θ is an algebraic integer if and only if the additive group generated by all powers 1, θ , θ^2 , ... is finitely generated.
- 15. a) If d is a square-free rational integer, then prove that the integers of $\mathbb{Q}(\sqrt{d})$ are

$$\mathbb{Z}\left[\sqrt{d}\right]$$
 if $d \not\equiv 1 \pmod{4}$
 $\mathbb{Z}\left[\frac{1}{2} + \frac{1}{2}\sqrt{d}\right]$ if $d \equiv 1 \pmod{4}$

b) Prove that the ring $\mathfrak D$ of integers $\mathbb Q(\zeta)$ is $\mathbb Z[\zeta]$.