Reg. No.:

III Semester M.Sc. Degree (C.B.S.S. - Reg./Supple./Imp.) Examination, October 2023 (2020 Admission Onwards) MATHEMATICS

MAT3C13 : Complex Function Theory

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks.

- Prove that the sum of the residues of an elliptic function is zero.
- 2. Define the period module. Show that if f is not a constant function, then the elements of the period module of f are isolated.
- 3. Let $\gamma:[0,1]\to\mathbb{C}$ be a path from a to b and let $\{(f_t,D_t):0\le t\le 1\}$ and $\left\{ (g_t,B_t): 0 \leq t \leq 1 \right\} \ \text{ be analytic continuations along } \gamma \, \text{such that } [f_0]_a = [g_0]_a.$ Prove that $[f_1]_b = [g_1]_b$. 4. Show that if G an open connected subset of C, is homeomorphic to the unit
- disk, then G is simply connected.
- 5. a) Prove that if $u: G \to \mathbb{C}$ is harmonic, then u is infinitely differentiable.
 - b) Define the mean value property.
- 6. Prove that if $u: G \to \mathbb{R}$ is a continuous function which has the MVP, then u is harmonic.

P.T.O.

K23P 1410

PART - B

16 marks. Unit - I

Answer any four questions without omitting any Unit. Each question carries

- 7. a) Define basis of a period module. Prove that any two bases of the same module are connected by a unimodular transformation. b) Prove that an elliptic function without poles is a constant.
- 8. a) Prove that a non-constant elliptic function has equally many poles as it has zeros.
 - b) Prove that zeros a₁, a₂, ..., a_n and poles b₁, b₂, ..., b_n of an elliptic function satisfy $a_1 + a_2 + ... + a_n \equiv b_1 + b_2 + ... + b_n \pmod{M}$.
- 9. a) Prove that for Rez > 1, $\zeta(z) \Gamma(z) = \int_{0}^{\infty} (e^{t} 1)^{-1} t^{z-1} dt$. b) Define Riemann's functional equation. State and prove Euler's theorem.
 - Unit II

State and prove Mittag-Leffler's theorem.

State and prove Runge's theorem.

- 12. a) When does a function element (f,D) said to admit unrestricted analytic
- continuation in G? b) State and prove Monodromy theorem.
 - Unit III

a) State and prove Jensen's formula. Also state Poisson-Jensen formula.

- b) Suppose $f(0) \neq 0$ in Jensen's formula. Show that if f has a zero at z = 0 of multiplicity m, then $\log \left| \frac{f^{(m)}(0)}{m!} \right| + m \log r = -\sum_{k=1}^{n} \log \left(\frac{r}{|a_k|} \right) + \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| f(re^{i\theta}) \right| d\theta$.

0

b) Let G be a region and $\phi: G \to \mathbb{R}$ be a continuous function. Then prove that

K23P 1410

 φ is subharmonic iff for every region \boldsymbol{G}_1 contained in \boldsymbol{G} and every harmonic function u_1 on G_1 , $\phi - u_1$ satisfies the maximum principle on G_1 . c) If ϕ_1 and ϕ_2 are subharmonic functions on G and if $\phi(z) = max\{\phi_1(z), \phi_2(z)\}$

14. a) Define subharmonic and superharmonic function. When does one say that

a function satisfies the maximum principle?

-3-

- for each z in G, then show that φ is a subharmonic function. 15. Let D = $\{z: |z| < 1\}$ and suppose that $f: \partial D \to \mathbb{R}$ is a continuous function. Then prove that there is a continuous function $u\colon\! \widetilde{D}\to\mathbb{R}$ such that a) u(z) = f(z) for z in ∂D .
 - b) u is harmonic in D. Also show u is unique and is defined by the formula $u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt, \text{ for } 0 \le r < 1, 0 \le \theta \le 2\pi.$