Reg. No.:

Name :

III Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.)
Examination, October 2023
(2020 Admission Onwards)

MATHEMATICS

MAT3C14: Advanced Real Analysis

Time: 3 Hours

0

Max. Marks: 80

K23P 1411

PART - A

Answer four questions from this Part, Each question carries 4 marks.

- Distinguish between pointwise boundedness and uniform boundedness of sequence of functions on a set E.
- 2. Define the limit function of sequence $\{f_n\}$ of functions and show that for m, n = 1, 2, 3, ..., if $S_{m,n} = \frac{m}{m+n}$, then $\lim_{n \to \infty} \lim_{m \to \infty} S_{m,n} \neq \lim_{m \to \infty} \lim_{n \to \infty} S_{m,n}$.
- 3. Define beta function.
- 4. Show that the functional equation $\Gamma(x+1) = x\Gamma(x)$ holds if $0 < x < \infty$.
- Prove that a linear operator A on a finite-dimensional vector space X is one-toone if and only if the range of A is all of X.
- 6. State the implicit function theorem.

 $(4 \times 4 = 16)$

PART - B

Answer 4 questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- State and prove the Stone-Weierstrass theorem.
- a) Show that there exists a real continuous function on the real line which is nowhere differentiable.
 - b) If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then show that the $\{f_n\}$ has a subsequence $\{f_{nk}\}$ such that $\{f_{nk}(x)\}$ converges for every $x \in E$.

P.T.O.

K23P 1411

- a) If {f_n} and {g_n} converge uniformly on a set E, then prove that {f_n + g_n} converges uniformly on E.
 - b) If {f_n} and {g_n} are sequences of bounded functions, then prove that {f_n · g_n} converges uniformly on E.
 c) Suppose (f) is a sequence of functions defined on E. and suppose if (x) < M.
 - c) Suppose $\{f_n\}$ is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n$ for $x \in E$ and n = 1, 2, 3, ..., then prove that $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Unit - II

- 10. a) Suppose that the series ∑_{n=0}[∞] c_nxⁿ converges for |x| < R, and if f(x) = ∑_{n=0}[∞] c_nxⁿ, then prove that the function f is continuous and differentiable in (-R, R), and f'(x) = ∑_{n=1}[∞] nc_nxⁿ⁻¹ where |x| < R.
 b) State and prove Taylor's theorem.
- 11. State and prove Parseval's theorem.
- 12. a) If x > 0 and y > 0, then show that $\int_0^1 t^{x-1} \left(1-t\right)^{y-1} dt = \frac{\Gamma\left(x\right)\Gamma\left(y\right)}{\Gamma\left(x+y\right)}$.

 b) If f is continuous (with period 2π) and if $\epsilon > 0$, then prove that there is a
 - trigonometric polynomial P such that $|P(x) f(x)| < \epsilon$ for all real x.

Unit - III

- 13. a) Define dimension of a vector space.
 - b) Let r be a positive integer, if a vector space is spanned by a set of r vectors, then prove that dim X ≤ r.
 - c) Show that dim $\mathbb{R}^n = n$.
- 14. a) Define a continuously differentiable mapping.
 b) Suppose f maps an open set E ⊂ ℝⁿ into ℝ^m. Then prove that f ∈ ℰ|(E)
 - if and only if the partial derivatives $D_j f_j$ exist and are continuous on E for $1 \le i \le m$, $1 \le j \le m$.
- State and prove inverse function theorem.

(4×16=64)

0