Reg. No. :

Name :

IV Semester M.Sc. Degree (C.B.S.S.-Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) **MATHEMATICS**

MAT4E02: Fourier and Wavelet Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. With the usual notations, prove that $\langle R_k z, R_j w \rangle = \langle z, R_{j-k} w \rangle = \langle R_{k-j} z, w \rangle$ for any integers j and k, z, $w \in l^2(Z_N)$.
- 2. Find D(U(z)) for z = (i, -1, -1, i).
- 3. Prove that the Trigonometric system is an orthonormal set in $L^2([-\pi, \pi))$.
- 4. Prove that every cauchy sequence $\{z_k\}_{k=M}^{\infty}$ converges in $I^2(Z)$.
- 5. Suppose f, $g \in L^1(\Re)$ and $\hat{f} = \hat{g}$ a.e. Prove that f = g a.e.
- Suppose f ∈ R. Prove that every point of R is a Lebesgue point of f.

Answer four questions from this Part without omitting any Unit. Each question

PART - B

carries 16 marks. Unit - I 7. a) Prove the following: Suppose $N = 2^n$, $1 \le p \le n$, and let $u_1, v_1, u_2, v_3, \dots, u_n, v_n$

- form a pth stage wavelet filter sequence. Suppose $z \in l^2(Z_N)$. Then the output $\{x_1, x_2, ..., x_p, y_p\}$ of the analysis phase of the corresponding p^{th} stage wavelet filter can be computed using no more than 4N + log₂N complex multiplications. b) State and prove the necessary and sufficient condition for the existence of
 - first stage wavelet basis for $I^2(Z_N)$.

P.T.O.

8. a) State and prove the folding lemma.

K23P 0206

- b) Suppose M is a natural number and N = 2M and $z \in \ell^2(Z_N)$. Prove that $(z^*)^* = \hat{z}(n+M)$ for all n.

-2-

- c) Given that $\hat{u} = (\sqrt{2}, 1, 0, 1)$ and $\hat{v} = (0, 1, \sqrt{2}, -1)$. Show that $\{v, R_2 v, u, R_2 u\}$ forms an ortho normal basis for $l^2(Z_N)$. 9. Construct Daubechies's D_8 wavelet basis on Z_N .
- Unit II

- 10. a) Define the spaces $L^1([-\pi,\pi))$ and $L^2([-\pi,\pi))$. Show that $L^2([-\pi,\pi)) \subseteq L^1([-\pi,\pi))$. b) Let $\{a_j\}_{j\in\mathbb{Z}}$ be an ortho normal set in a Hilbert space H. Prove that the following
 - are equivalent. i) $\{a_j\}_{j\in Z}$ is complete.
 - ii) For all $f,g \in H_i \left\langle f,g \right\rangle = \sum_{k \mid z} \left\langle f,a_{_j} \right\rangle \overline{\left\langle g,a_{_j} \right\rangle}$.
 - iii) For all $f \in H$, $||f||^2 = \sum_{i=1}^{n} |\langle f, a_i \rangle|^2$.
 - c) Suppose that $u, v \in l^2(Z)$. Prove that $B = \{R_{2k}v\}_{k \in Z} \cup \{R_{2k}u\}_{k \in Z}$ is a complete
- orthonormal set in $I^2(Z)$ if and only if the system matrix $A(\theta)$ is unitary for all θ . 11. a) With the usual notations prove that $V_{-l} \oplus W_{-l} = V_{-l+1}$ in $l^2(Z)$.
- b) Show that $L^2([-\pi, \pi))$ is a proper subset of $L^1([-\pi, \pi))$. c) Given that $z \in \ell^2(Z)$ and $w \in \ell^1(Z)$. Show that $z * w \in \ell^2(Z)$ and $||z * w|| \le ||z|| ||w||_1$.

if $|\hat{\mathbf{w}}(\theta)| = 1$ for all $\theta \in [-\pi, \pi)$.

 $I^{2}(Z)$.

- 12. a) Prove the following : Suppose $f \in L^1([-\pi, \pi))$ and $\left\langle f, e^{in\theta} \right\rangle = 0, \forall n \in Z$. Then $f(\theta) = 0$ a.e.
- b) Suppose $w \in l^1(Z)$. i) Prove that $\{R_k w\}, k \in Z$ is a complete orthonormal set for $\ell^2(Z)$ if and only

Unit - III

ii) Prove that $\{R_{2k}w\}$, $k \in Z$ cannot be a complete orthonormal set in

13. a) Prove that $^{\wedge}: L^2(R) \rightarrow L^2(R)$ is one-to-one and onto with inverse b) State and Prove Fourier Inversion Theorem on L¹(R).

0

K23P 0206

- 14. a) Given that $G: R \to R$ by $G(x) = \frac{1}{\sqrt{2}}e^{\frac{-x^2}{2}}$. Prove that i) $\int_{\Omega} G(x)dx = 1$
 - ii) There exist $c_1 > 0$ such that $G(x) \le \frac{c_1}{(1+|x|)^2}$.
 - b) Suppose $f \in L^1(R)$. Prove that $|\hat{f}(\zeta)| \le ||f||$ for all ζ . c) Let $f(x) = \frac{1}{x}$ for x > 1. Show that $f \in L^2(R) \setminus L^1(R)$.
- 15. a) Suppose $f \in L^1(R)$ and $\hat{f} \in L^1(R)$. Prove that $\frac{1}{2\pi} \int_R \hat{f}(\xi) e^{ix\xi} d\xi = f(x)$ at every Lebesgue point x of f.
 - b) Suppose $f \in L^1(R)$ and $y, \xi \in R$. Prove that $(\overline{f})^*(\xi) = \overline{\widehat{f}(\xi)}$ a.e. c) Suppose $f \in L^1(R)$, Prove that \hat{f} is a continuous function on R.