

Reg. No	. :	
---------	-----	--

Name :

II Semester M.Sc. Degree (C.B.S.S. – Reg./Supple./Imp.) Examination, April 2022 (2018 Admission Onwards) MATHEMATICS

MAT 2C 06 - Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks.

- 1. Prove that $\mathbb{Z}[i]$ is an Euclidean domain.
- 2. Construct a field of four elements by showing $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$.
- Show that it is not always possible to construct with straight edge and compass, the side of a cube that has double the volume of original cube.
- 4. Show that if F is a finite field of characteristic p, then the map $\sigma_p \colon F \to F$ defined by $\sigma_p(a) = a^p$, for $a \in F$, is an automorphism.
- 5. Prove that there exists only an unique algebraic closure of a field up to isomorphism.
- 6. If E is a finite extension of F, Then prove that {E:F} divides [E:F]. (4×4=16)

PART - B

Answer any 4 questions without omitting any Unit. Each question carries 16 marks.

UNIT - I

7. a) State and prove Kronecker's theorem.
b) Prove that ℚ (π)≅ ℚ (x), where ℚ (x) is the field of rational numbers over ℚ.
c) Prove that ℝ [x]/< x²+1 > ≅ ℝ (i) ≅ ℂ.
8. a) Prove that if D is a UFD, then D[x] is a UFD.
b) Show that not every UFD is a PID.
c) Express 18x² – 12x + 48 in ℚ [x] as a product of its content with a primitive polynomial.
5

P.T.O.

6

10

8

4

6

5

5

8

3

5

K22P 0189 *

- 9. a) Prove that for a Euclidean domain with Euclidean norm v, v(1) is minimal among all v (a) for non-zero a ∈ D, and also u ∈ D is a unit if and only if, v(u) = v(1).
 b) Let p the an odd prime in Z. Then prove that p = a² + b² for a, b ∈ Z, if and
 - only if $p \equiv 1 \pmod{p}$.

 UNIT II

01411 - 11

- 10. a) Prove that there exists finite of p" elements for every prime power p".
 - b) Let p be a prime and $n \in \mathbb{Z}^+$. Prove that if E and E' are fields of order pⁿ, then $E \cong E'$.
- 11. a) Find the degree and basis for $\mathbb{Q}(\sqrt[3]{5},2)$ and $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ over \mathbb{Q} .
 - b) Prove in detail that $\mathbb{Q}(\sqrt{3}+\sqrt{7})=\mathbb{Q}(\sqrt{3},\sqrt{7})$.
 - c) Define algebraic closure of a field and prove that, a field F is algebraically closed if and only if, every non constant polynomial in F[x] factors in F[x] into linear factors.
- 12. a) Describe the group G(Q√2,√3 / Q).
 - b) Let F be a field and let α , β are algebraic over F. Then prove that $F(\alpha) \cong F(\beta)$ if and only if α and β are conjugates over F.
 - c) Let $\{\sigma_i/i\in I\}$ be the collection of automorphisms of a field \overline{F} . Then prove that the set $E_{\{\sigma_i\}}$ of all $a\in E$ left fixed by every σ_i for $i\in I$, forms a subfield of E.

UNIT – III

- 13. a) Prove that a finite separable extension of a field is a simple extension.

 8
- b) Every finite field is perfect.14. a) Show that [E : F] = 2, then E is splitting field over F.
- b) Show that if $E \le \overline{F}$, is a splitting field over F, then every irreducible polynomial
 - in F[x] having a zero in E splits in E.
 - c) Find the splitting field and its degree over ℚ of the polynomial (x² 2) (x³ 2) in ℚ [x].
- 15. a) Let K be a finite extension of degree n of a finite field F of p^r elements. Then G(K/F) is cyclic of order n and is generated by σ_p^r , for $\alpha \in K$, $\sigma_p^r(\alpha) = \alpha^{p^r}$.
- b) State isomorphism extension theorem.
 c) Let f(x) be irreducible in F[x]. Then prove that all zeros in f(x) in F has same multiplicity.