Reg. No. : .....

Name : .....

I Semester M.Sc. Degree (C.B.S.S. - Reg./Sup./Imp.) Examination, October 2022 (2019 Admission Onwards) MATHEMATICS

MAT1C03: Real Analysis

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks :

- Prove that compact subset of metric spaces are closed.
- 2. Give an example of an open cover of the segment (0, 1) which has no finite
- 3. If  $f(x) = |x^3|$ . Show that  $f^3(0)$  does not exist.
- Using L'Hospital's rule, evaluate lim 1-cos2x
- 5. Show that the polynomial  $f(x) = x^5 + x^4 + x^3 + x + 1$  is of bounded variation on [0, 1].
- 6. If  $\int f d \infty = 0$  for every f which is monotonic on [a, b]. Prove that  $\infty$  must be a constant on [a, b].

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks:

Unit - I

- 7. a) Prove the following:
  - i) For any collection  $\{G_{_\kappa}\}$  of open sets,  $\bigcup_{_\kappa}G_{_\kappa}$  is open.
  - ii) For any collection  $\{F_\omega\}$  of closed sets,  $\bigcap_\infty F_\omega$  is closed. iii) For any collection  $G_1$ ,  $G_2$ , ....,  $G_n$  of open sets,  $\bigcap_{i=1}^{n} G_i$  is open.

  - iv) For any collection  $F_1, F_2, \dots, F_n$  of closed sets,  $\bigcup_{i=1}^n F_i$  is closed. b) Show that there exist a perfect set in  $R^1$  which contain no segment.

P.T.O.

K22P 1603

8. a) Let A be the set of all sequences whose elements are the digit 0 and 1. Prove that A is uncountable. b) Prove that countable union of countable set is countable.

-2-

- 9. a) Prove the following : Suppose Y ⊂ X. A subset E of Y is open relative to Y
- if and only if  $E = G \cap Y$  for some open subset G of X. b) Let A, B are two subsets of a metric space X. Prove that
  - i)  $(\overline{A \cup B}) = \overline{A} \cup \overline{B}$ 
    - ii)  $(\overline{A \cap B}) \subseteq \overline{A} \cap \overline{B}$ .

## a) State and prove the Generalized Mean Value Theorem.

Unit - II

- b) Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b)
  - and let g be its inverse function. Prove that g is differentiable and that  $g'(f(x)) = \frac{1}{f'(x)}, a < x < b$ . c) Prove the following: If f is monotonic on [a, b] and if ∝ is continuous on [a, b], then  $f \in R(\infty)$ .
- 11. a) If f,  $g \in R(\alpha)$  on [a, b]. Prove that (i) f  $g \in R(\alpha)$  (ii)  $|f| \in R(\alpha)$  and  $\left|\int f d\alpha\right| \leq \int |f| d\alpha$
- b) Prove the following: i) If  $f(x) \le g(x)$  on [a, b], then  $\int f d \propto \le \int g d \propto$ .
  - ii) If  $f \in R(\infty)$  on [a, b] and if a < c < b, then  $f \in R(\infty)$  on [a, c] and [c, b].
- 12. a) State and prove L' Hospital's Rule. b) Suppose a and c are real numbers, c > 0, and f is defined on [-1, 1] by  $f(x) = x^a \sin(|x|^{-c}), x \neq 0, \text{ and } f(0) = 0.$  Prove the following:
  - ii) f' (0) exist if and only if a > 1. iii) f' is continuous if and only if a > 1 + c.

i) f is continuous if and only if a > 0.

- iv) f''(0) exist if and only if a > 2 + c.

b) Let f be of bounded variation on [a, c] and [c, b]. Prove that  $V_{t}(a, b) = V_{t}(a, c) + V_{t}(c, b).$ 

14. a) Assume that f, g are each of bounded variation on [a, b]. Prove that

-3-

Unit - III

K22P 1603

 $V_{f\pm g} \le V_f \pm V_g$  and  $V_{fg} \le AV_f + BV_g$  for some A, B  $\ge 0$ .

13. a) State and prove the fundamental theorem of calculus.

- b) Show that the function  $f(x) = x \sin\left(\frac{1}{x}\right)$ ,  $x \ne 0$  and f(0) = 0 is not of bounded variation on  $\left| 0, \frac{2}{\pi} \right|$ .
- 15. a) Given that  $f = e^{2\pi it}$  if  $t \in [0, 1]$  and  $f = e^{2\pi it}$  if  $t \in [0, 2]$ . Prove that the length of g is twice as that of f. b) Prove that: Two paths f and g in Rn are equivalent if and only if they have
  - the same graph. c) Examine whether the function  $f(x) = x^2 \cos\left(\frac{1}{x}\right)$ ,  $x \ne 0$ , f(0) = 0 is of bounded variation on [0, 1].