Reg. No.:	**********************

I Semester M.Sc. Degree (CBSS - Reg/Sup/Imp.) Examination, October 2022 (2019 Admission Onwards)

2

MATHEMATICS MAT1C04: Basic Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part, Each question carries 4 marks. (4×4=16)

- Prove that every 0-dimensional T₀ space is totally disconnected.
- 2. Let X be a set with at least two members and let T be the trivial topology on X. Then show that (X, T) is not metrizable.
- 3. Define usual topology and lower limit topology on \mathbb{R} .
- 4. Let (X, \mathcal{T}) be a topological space, let A be a subset of X and let \mathcal{B} be a basis for T. Then prove that $\{B \cap A : B \in \mathcal{B}\}$ is a basis for the subspace topology on A.
- 5. Let (X_1, T_1) and (X_2, T_2) be Hausdorff spaces and let T be the product topology on $X = X_1 \times X_2$. Then prove that (X, T) is a Hausdorff space.
- 6. Examine whether $\mathbb{R} \{0\}$ with usual topology is connected or not. PART - B

Answer any four questions from this Part without omitting any Unit. Each question (4×16=64) Unit - I

7. a) Let d be the usual metric for \mathbb{R}^n . Then show that

 $A = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : \text{for each } i = 1, 2, ..., n, x_i \text{ is rational} \} \text{ is a countable }$ b) Prove that every complete metric space is of the second category.

P.T.O.

K22P 1604

be a function and for each $n \in \mathbb{N}$, let $f_n : X \to Y$ be a continuous function such that the sequence \langle f_n \rangle converges uniformly to f. Then prove that f is continuous. 8. a) Prove that a family ${\cal B}$ of subsets of a set X is a basis for some topology on X if and only if : (1) $X = \bigcup \{B : B \in \mathcal{B}\}\$ and (2) if $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$,

-2-

- then there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq B_1 \cap B_2$. b) Let T and T' be topologies on a set X and let B and B' be bases for T and T'respectively. Then prove that the following conditions are equivalent:
 - T' is finer than T. ii) For each $x \in X$ and each $B \in \mathcal{B}$ such that $x \in B$, there is a member B' of \mathcal{B}'
 - such that $x \in B'$ and $B' \subseteq B$.
- c) Show that the lower-limit topology on $\mathbb R$ is not the usual topology on $\mathbb R$. 9. a) Let A be a subset of a topological space (X, T), and let $x \in X$. Then prove
 - that $x \in \bar{A}$ if and only if every neighborhood of x has a nonempty intersection
- b) Let A be a subset of a topological space (X, T). Then prove that $\bar{A} = A \cup A'$. c) Prove that every second countable space is separable.
 - Unit II
- 10. a) Let $\{(X_{\alpha}, T_{\alpha}) : \alpha \in \Lambda\}$ be an indexed family of topological spaces, and for each $\alpha \in \Lambda$, let $(A_{\alpha}, \mathcal{T}_{A\alpha})$ be a subspace of $(X_{\alpha}, \mathcal{T}_{\alpha})$. Then prove that the

- product topology on $\Pi_{\alpha\in\Lambda}$ A_{α} is the same as the subspace topology on $\Pi_{\alpha\in\Lambda}$ A_{α} determined by the product topology on $\Pi_{\alpha\in\Lambda}$ X_{α} . b) Let $\{(X_\alpha,\,\mathcal{T}_\alpha):\alpha\in\Lambda\}$ be an indexed family of first countable spaces, and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Then prove that (X, T) is first countable if and only if T_{α} is the trivial topology for all but a countable number of α . 11. a) Let (A, T_A) be a subspace of a topological space (X, T). Prove that a subset
 - C of A is closed in (A, T_A) if and only there is a closed subset D of (X, T) such that $C = A \cap D$. b) Let (X, \mathcal{T}) and (Y, \mathcal{U}) be topological spaces, let $f: X \to Y$ be a function, and let $\{U_{\alpha}: \alpha \in \Lambda\}$ be a collection of open subsets of X such that

 $X=\bigcup_{\alpha\in\Lambda}\ U_{\alpha}\ \text{and}\ f\mid_{U\alpha}\colon U_{\alpha}\to\ Y\ \text{is continuous for each}\ \alpha\in\Lambda.\ Then\ prove\ that\ f\ is\ continuous.}$

c) Prove that the function $f:\mathbb{R}\to\mathbb{R}^2$ defined by $f(x)=(x,\,0)$ for each $x\in\mathbb{R}$ is an embedding of \mathbb{R} in \mathbb{R}^2 .

b) Let (X_1, T_1) and (X_2, T_2) be Hausdorff spaces, and let T denote the product topology on $X = X_1 \times X_2$. Then prove that (X, T) is Hausdorff. c) Let $(X_1,\,\mathcal{T}_1)$ and $(X_2,\,\mathcal{T}_2)$ be topological spaces, and let π_1 and π_2 denote the

-3-

be a function. Then prove that f is continuous if and only if π_1 of and π_2 of

12. a) Let (X, T), (Y_1, U_1) and (Y_2, U_2) be topological spaces and let $f: X \to Y_1 \times Y_2$

K22P 1604

- projection maps. Then prove that $S = \left\{ \pi_1^{-1} \left(U \right) \colon U \in \mathcal{T}_1 \right\} \cup \left\{ \pi_2^{-1} \left(V \right) \colon V \in \mathcal{T}_2 \right\}$ is a subbasis for the product topology on $X_1 \times X_2$. Unit - III
- 13. a) Let $\{(X_{\alpha}, T_{\alpha}) : \alpha \in \Lambda\}$ be a collection of topological spaces, and let T be the product topology on $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Then prove that (X, T) is locally connected if and only if for each $\alpha \in \Lambda$, $(X_{\alpha}, \mathcal{T}_{\alpha})$ is locally connected and for all but a finite number of $\alpha \in \Lambda$, (X_{α}, T_{α}) is connected.
 - b) Prove that a topological space (X, \mathcal{T}) is locally connected if and only if each component of each open set is open. c) Let (X, \mathcal{T}) be a topological space and suppose X = A \cup B, where A and B are nonempty subsets that are separated in X. If H is a connected subspace
- of X, then prove that $H \subseteq A$ or $H \subseteq B$. 14. a) Let (X, T) be a topological spaces and let $A \subseteq X$. Then prove that the following conditions are equivalent: i) The subspace (A, T_A) is connected.

ii) The set A cannot be expressed as the union of two nonempty sets that

- are separated in X.
- iii) There do not exist U, $V \in T$ such that $U \cap A \neq \emptyset$, $V \cap A \neq \emptyset$, $U \cap V \cap A \neq \emptyset$ and $A \subseteq U \cup V$. b) Prove that the closed unit interval I has the fixed-point property.
- c) Let (X, T) be a topological space and suppose $X = A \cup B$, where A and B are nonempty subsets that are separated in X. If H is a connected subspace
- of X, then prove that $H \subseteq A$ or $H \subseteq B$. 15. a) Prove that each path component of a topological space is pathwise

 - Show that the topologist's sine curve is not pathwise connected. c) Define path product of two paths in a topological space.