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PART - A

Answer four questions from this Part. Each question carries 4 marks.

1. Define the Gradient Vector field. Find the gradient vector field of the function
f(x1i X5) = X4 + 23, Xy, X, € R.

2. Sketch the graph of the function f : R? — R defined by f(x,, X,) = X + X3.

3. Define the term geodesic. Prove that geodesics have constant speed.

4. Compute V,f where f(x;, x,) = 2x% — 3x,x3, v= (1, 0, -1, 1).

5. Prove that B(t) = (sin t, — cost) is a reparametrization of a(t) = (cos t, sin t),
0<t<2m. 5

6. With usual notations, Prove that d(f + g) = df + dg.

PART -B

Answer four questions from this Part without omitting any Unit, each question

carries 16 marks.
Unit =1

7. a) Find the integral curve through (1, 1) of the vector field

b) Leta, b, ceR suchihatac—b?> 0. Show that the maximum and minimum

values of the function g(x;, X,) = ax$ + 2bx,x, + cx2 on the circle x2 + x3

~ - ~ . . a
=1 are A4, A, where L, &, are the eigenvalues of the matrix Lb J
c

c) State and Prove the Lagrange Multiplier Theorem.
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14. a) Let S be an oriented 2-surface in R3 and let p € S. Show that for each
V, We Sp, Ly(v) x Lp(w) = K(p) v x w.
b) Derive the formula for Gaussian curvature of an oriented n-surface in
RN+ 1.
15. a) Find the arc length of the curve « : [0, 1] = R2 where a(t) = (i, t3).
b) Prove the following : Let S be an n surface in R"* ' and let f : S — RK.
Then fis smooth if and only if f « ¢ : U — RX is smooth for each local
parametrization 6: U — S.

c) Compute f(xde, + X4dX5 ), where «(t) = (2 cost, —sint), 0 <t < 2.
o




