Reg. No. :

Name :

IV Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) **MATHEMATICS**

MAT4C16: Differential Geometry

Time: 3 Hours

1 1

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Define the Gradient Vector field. Find the gradient vector field of the function $f(x_1, x_2) = x_1 + 2x_2^2, x_1, x_2 \in R.$
- 2. Sketch the graph of the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 + x_2^2$. 3. Define the term geodesic. Prove that geodesics have constant speed.
- 4. Compute $\nabla_{\mathbf{v}} f$ where $f(\mathbf{x}_1, \mathbf{x}_2) = 2\mathbf{x}_1^2 3\mathbf{x}_1\mathbf{x}_2^2$, $\mathbf{v} = (1, 0, -1, 1)$. 5. Prove that $\beta(t) = (\sin t, -\cos t)$ is a reparametrization of $\alpha(t) = (\cos t, \sin t)$,
- $0 \le t \le 2\pi$. 6. With usual notations, Prove that d(f + g) = df + dg.
- PART B

Answer four questions from this Part without omitting any Unit, each question carries 16 marks. Unit - I

- 7. a) Find the integral curve through (1, 1) of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, -x_1).$
 - b) Let a, b, $c \in R$ such that $ac b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ on the circle $x_1^2 + x_2^2$
 - = 1 are λ_1 , λ_2 where λ_1 , λ_2 are the eigenvalues of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. State and Prove the Lagrange Multiplier Theorem.

P.T.O.

K23P 0204

8. a) Prove the following: Let S be an n surface in \mathbb{R}^{n+1} , $\mathbb{S} = f^{-1}(c)$ where $f:U\to R$ is such that $\nabla_q\neq 0$ for all $q\in S$. Suppose $g:U\to R$ is a smooth function and $p \in S$ is an extreme point of g on S. Then there exist a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$. b) Sketch the cylinder $f^{-1}(0)$ where $f(x_1, x_2, x_3) = x_1 - x_2^2$. c) Find the orientations on the n-sphere $x_1^2 + x_2^2 + x_3^2 + \ldots + x_{n+1}^2 = 1$.

-2-

- 9. a) Sketch the level curves (c = -1, 0, 1) and graph of the function $f(x_1, x_2) = x_1^2 + x_2^2.$
 - b) i) Verify that a cylinder over an n-1 surface in \mathbb{R}^n is an n-surface in \mathbb{R}^{n+1} . ii) Show that a surface of revolution is a 2-surface.
 - c) Show that graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function

Unit - II

- 10. a) Describe the spherical image of the 2-surface $f^{-1}(1)$, oriented by $\frac{-\nabla f}{\|\nabla f\|}$ b) Let S denote the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 . Show that α is a geodesic
- of S if and only if α is of the form $\alpha(t) = (\cos(at + b), \sin(at + b), ct + d)$ for some a, b, c, $d \in R$. 11. a) Prove that in an n-plane parallel transport is path independent. b) Prove that The Weingarton map is self-adjoint.
- 12. a) Let $\alpha(t) = (x(t), y(t))$ be a local parametrization of the oriented plane curve C. Show that $\kappa \circ \alpha = x'y'' - x''y' / (x'^2 + y'^2)^{3/2}$.
 - b) Show that
 - i) $D_v(fX) = (\nabla_v f)X(p) + f(p)D_v X$ ii) $\nabla_v(X.Y) = (D_vX).Y(p) + X(p).(D_vY).$
- Unit III 13. a) Prove the following: Let C be a connected oriented plane curve and let $\beta:I\to C$ be a unit speed global parametrization of C. Then β is either one
- to one or periodic. Moreover, $\boldsymbol{\beta}$ is periodic if and only if C is compact. b) Find the Gaussian curvature of the ellipsoid $x_1^2/a^2 + x_2^2/b^2 + x_3^2/c^2 = 1$

b) Derive the formula for Gaussian curvature of an oriented n-surface in B^{n+1} .

0

(1)

K23P 0204

15. a) Find the arc length of the curve $\alpha: [0, 1] \to \mathbb{R}^2$ where $\alpha(t) = (t^2, t^3)$. b) Prove the following: Let S be an n surface in R^{n+1} and let $f: S \to R^k$. Then f is smooth if and only if $f \circ \phi : U \to R^k$ is smooth for each local

-3-

14. a) Let S be an oriented 2-surface in R^3 and let $p \in S$. Show that for each

 $v, w \in S_p, L_p(v) \times L_p(w) = K(p) v \times w.$

parametrization $\phi: U \rightarrow S$.

c) Compute $\int (x_2 dx_1 + x_1 dx_2)$, where $\alpha(t) = (2 \cos t, -\sin t)$, $0 \le t \le 2\pi$.